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I. An Qutline of the Research Results

The present report summarizes ths research findings on several fundamental
problems associated with the mechanical behavior and failure of filament-wound
composite structures. The main body of the investipation and its conclusions are
based on the available experimental.results of filament-wound tubes of composite
material systems tested under an internal pressure load. Depending on the
winding geometry, the end conditions of the tubes, and other factors, different
failure modes are observed and are preceded by widely different strain paths.
In most cases, significant deviations from linear strain-pressure relations are
found at moderate or even low levels of the applied pressure load. A basic
problem in characterizing and analyzing the nonlinear behavior of a filament-
wound structure is the determination of the (incremental) constitutive equations
of a generic filament layer. However, even the formulation of the in-situ
linearly elastic constitutive relation of the layer from the experimental results
of tubes subjected to small deformations is not without ambiguity because, due
to the variations in the process parameters (such as the resin content, fiber
misalignment and waviness), the elastic moduli of the filament layer as
calculated from different tube specimens show appreciable, and sometimes even
substantial, discrepancies. The initial elastic modulus of the filament layer
along the fiber direction is often found to be lower than the prediction of the
micromechanical analysis based on the elastic moduli of the constituents. In the
range of deformation where the composite behavior deviates significantly from
linearity, the experimental results suggest strong coupling between the
transverse extensional deformation and the shear deformation {(associated with the
directions parallel and perpendicular to the fibers). This coupling effect may
seriously affect the solutions of filament-wound structures in the nolinear and
inelastic range of deformation, but has not been sufficiently recognized in the
past.

Depending on the winding geometry, material systems, and the nature of
loading, filament layers in a composite tube may undergo significantly different
strain paths in the intrinsic strain space. Failure initiation may occur at a
low or moderate level of the pressure load, and the specimen may experience

progressive damage and degradation of stiffness before ultimate failure in a



particular failure mode. Each distinct failure mode requires a specific
methodology of failure analysis, which may involve empirical failure criteria,
incremental macromechanical analysis involving stiffness degradation,
micromechanical modeling and analysis, and failure criteria of fracture
mechanics.

The report includes unpublished material presented in Parts II to V of the
main text, and published or presented papers attached as Appendices B through H.
Several important results obtained in the present study are summarized in the
following.

(1) A kinematical analysis of the finite deformation of a long layered
tube, with emphasis on the intrinsic strain measures referred to the material
axes of the filament layers, is presented in Secs. 2.1 an 2.2 of Part II.

(2) A discussion of the scissoring action at the fiber cross-over points
is given in Sec., 2.3. The effect yields a distributed couple mument acting
between two adjacent filament layers and causes the non-symmetry of the in-plane
shearing stresses.

(3) An incremental formulation for the axisymmetric deformation of a long,
thick, layered composite tube, containing the incremental compliances of the
successive layers as parameters, is presented in Secs. 2.4 and 2.5. A simple
solution algorithm is given for the initial linear elasticity problem (Sec. 3).

(4) Analytical relations involving the winding angle, the intrinsic
incremental compliance coefficients of the filament layer and the experimental
data of the strains and the pressure are established in Secs., 4.1 to 4.3, These
relations may be used to evaluate the initial elastic moduli in the range of
small strain (Sec. 4.4) and to investigate the incremental shear modulus and
other incremental stiffness parameteis in subsequent. large deformation (Sec.
4.4},

(5) A constitutive mod:1l for large deformation of a filament layer,
including the coupling effert between the shear strain and the axtensional strain
perpendicular to the filament direction, is proposed. It is shown that the model
reconciles the significant difference in the shear stress/shear strain relation
between the experimental results of the open-end and the closed-end tubes with
the *45° winding angle (Sec. 4.5 to 4.8},

(6) An analysis scheme is given for the incremental solution of nonlinear

problems of filament-wound structures, based on the presently proposed nonlinear
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constitutive model of the filament layer (Sec. 4.9).

(7) A theoretical analysis is presented which demonstrates that, for a
unidirectional composite consisting of isotropic matrix and transversely isotro-
pic fibers, the micromechanical problems for determining the gross elastic moduli
from the constituent properties can be transformed to plane-strain, two-phase
elasticity problems involving a fictitious isotropic fiber regicn, with possible
discontinuous displacement data across the interfaces (Part IITI, Secs. 1 to 5).

(8) A two-dimensional boundary-element method is developed for efficient
and accurate solutions of the transformed, two-phase elasticity problems asso-
ciated with the determination of gross composite moduli, based on the existing
two-dimensional boundary-element-analysis computer codes for a single isotropic
elastic medium. A unique and appealing feature of the solution scheme is that
all boundary conditions, symmetry conditions and interface continuity and jump
conditions are treated in a unified and systematic way, allowing significant
simplification in tne implementation of the boundary-element methcd (Secs. 6 to
8). A FORTRAN program MICROBEM is written and listed in Appendix A of this
report,

(9) Numerical results of gross composite moduli are obtained by the
boundary-element method and found to be in excellent agreement with existing
elasticity solutions using serious expansions. The effects of the fiber-volume
fraction and of the Poisson’'s ratio of the resin material are investigated (Sec.
9). Sugpgestions for further research on the problems of nonlinear composite
behavior are mentioned (Sec. 10)}.

(10) Experimental data on the failure processes of filament-wound tubes
with different winding angles and end conditions are reduced to plots of the
intrinsic strains and the areal expansion ratio of the filament layer versus the
pressure load (Sec. 4, Part IV). Two broad categories of failure processes,
corresponding to the shear and expansion modzs of failure, are identified.
Various failure mechanisms that may operate in each mode are associated with the
different types of strain histories preceding the final failure (Sec. 3). An
analysis of the deformation of the fiber net without the resin material yields
useful suggestions concerning the nature of the failure process (Sec. 2).

(11) Micromechanical analyses of fiber-matrix debonding are conducted by
using a simplified, plane-strain analytical model considering the fibers as rigid

media. Solutions to the problems of transverse strain and shearing strain,
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corresponding respectively to relative displacements of two neighboring fibers
in the transverse and axial directions, are obtained by the boundary-element
method. A boundary-element code is developed for the present class of problems
which uses linear shape functions in the elements and exact elementwise
integration. The displacements on the crack boundary are solved and the strain-
energy-release rates associated with disbond growth are calculated by the method
of crack-closure integrals (Sec. 3).

(12) Similar micromechanical analysis is conducted for an oblique matrix
crack between two adjacent fibers. Boundary-element sclutions are computed for
cracks with the inclination angle varying from 15° to 75°. For each inclination
angle, the strain-energy-release rates are evaluated and compared between the two
cases depending on whether the fiber-matrix interface has or has not a short
disbond at the reentrant corner where the interface intersects the oblique matrix
crack (Sec. 6).

(13) An analysis of a possible failure mode due to the separation and
growth of a helical face layer from the interior surface of the filament-wound
tube is mentioned in Sec. 7, and with details presented in a published paper
attached as Appendix €. The work provides an analysis of an apparently puzzling
mode of failure observed in pressure testing of certain filament wound tubes
under the open-end condition.

(14) A general analysis of buckling and postbuckling deformation and growth
of a thin, two-dimensional delaminated layer in a composite laminate is presented
in a sequence of two papers attached as Appendices D and E. Delamination is a
prevalent mode of failure in composite laminates and filament-wound structures
are prone to local delamination failure in regions subjected to compressive
service loads.

(15) A stress-function based, variational analysis of the free-edge
interlaminar stress problems associated with the ends and openings of a composite
structure is introduced in Part V. The methods of analysis and the analytical
results are developed for the case of mechanical loading in a paper attached as
Appendix F, and suggested for the case of thermal loading in the two papers
attached as Appendices G and H. Free edge interlaminar stresses in layered
composite structures can initiate delamination failure. The present analysis
method yields highly efficient solutions with an accuracy comparable to elaborate

finite-element solutions using refined mesh.
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I1. Linear and Nonlinear Behavior of a Filament-Wound Composite Tube

1., Introduction

In producing a filament-wound composite structural component, continuous
filaments are laid down upon a rotating rigid mandrel by a feeding head which
traverses back and forth along the axial direction. In some cases the mandrel
undergoes both rotational and axial motion while the feeding head remains
stationary. 1In each pass of the feeding head, a thin band of filaments is laid
upon the surface of the partially finished product in a direction making an angle
a with respect to the meridional direction. For a general axisymmetric filament-
wound component, the angle a varies continuously during the forward or backward
pass. In the special case of a circular cylinder, a remains constant in each
pass but undergoes a discontinuous change when the relative axial motion reverses
the direction. Cylinders may be formed of only filaments wound at *a angle, or
they may have additicnal circumferential and longitudinal windings to enhance the
strength for various cases of loading.

The band of filaments laid down in a single pass of the feeding head often
consists of more than one layer of filaments in the thickness direction. Within
the band the parallel filaments form a helical pattern and are more or less
evenly distributed. This is ensured by applying a suitable tension in the
filaments and, in the production of large components, by feeding the filaments
through a series of rollers to produce desired wide tapes of uniform quality.

For several filament-wound structural components composed of the same
filament-resin material system and produced under the same winding process, the
fundamental structural unit for the analysis of the mechanical response is the

thin band of resia-impregnated filaments laid in a single pass of the feeding




head. These thin bands are analogous to the unidirectional laminae in a laminate
of fiber-reinforced composite. The mechanical behavior of the thin band and its
strength is determined by the material system and the winding and curing process.
When these bands are laid at predesigned angles to from the filament-wound
structure, the response behavior and the strength of the structure can be
calculated in terms of the properties of a generic band and the geometry of
winding.

One complicating factor in the case of a filament-wound composite, when
compared to a laminate formed by unidirectional laminae, is that the cross-over
of two adjacent bands with different winding angles can produce local effects on
the stresses in a filament-wound structure. However, if there are a large number
of band layers across the thickness of the structure, and if the winding process
ensures a fairly uniform distribution of the cross-over regions within the
structure, then the local stresses due to the c¢cross over of thin bands have
insignificant effect on the gross stiffness properties of the composite
structure, although they may have significant effects on its strength. In such
a case, the filament-wound structure may be modeled analytically as a curved
laminate, which is neatly divided into a sequence of thin laminae or layers.
Each layer is actually patched up from parallel bands of resin-impregnated
filaments introduced in the same or different passes of the feeding head. The
layer has a winding angle a different from the two adjacent layers (which often
have the winding angle =-a), and a is either constant or changes continuocusly on
the surface of the layer., In fact, this simplified model is almost universally
adapted in the existing analytical studies of filament-wound structures.

However, in the analysis of a filament-wound structure, the mechanical

properties of a layer is often less consistent than those of a lamina in a




laminate. Due to the nature of the winding process, it is more difficult to
avoid misalignment and uneven distribution of fibers, variations in the resin
content and the degree of fiber waviness, as well as the curing residual stresses
in filaments and the resin material. The constitutive relation of a filament
layer as determined from the properties of the filament and the resin phases by
a micromechanical analysis may be, and has been found to be, significantly
different from the in situ behavior of the layer in the composite, because the
micromechanical analysis usually ignores the deviation from perfect geometry and
the effects of the residual stresses. These deviations and the variations of the
process parameters are more significant in the products produced by filament
winding, than in the laminates made of unidirectional coupons.

A program to directly determine the in situ constitutive behavior of a
filament 1layer from the experimental testing of filament-wound tubes is
attractive because the test results implicitly include the effects of certain
process variables which are not easy to identify or to evaluate and which may
significantly affect the final product. Such experiments are, furthermore, the
only means to investigate the various failure modes and failure processes of
filament-wound components. For simplicity of analysis and testing, long tubes
with open or closed ends and consisting of alternating +e and —a filament layers
are tested under an increasing internal pressure load, with or without using a
rubber liner to contain the leakage of fluid from the tube wall. Analysis of the
experimental results indicates that most tubes begin to behave nonlinearly at a
relatively low pressure load. This is followed by several different deformation
patterns, depending essentially on the winding angle and the end condition of
testing, which lead to different modes of failure. The nonlinear response of the

tube in an early stage of pressure loading has important implications for the



design of filament-wound structures. The nonlinearity is largely, but not
entirely, associated with the large shear deformation of the resin material
between neighboring filaments. Small or moderate tensile strain of a filament
layer in the direction transverse to the fiber direction may cause microcracking
of the resin material and thereby progressively degradate the stiffness of the
layer.

An analysis of the existing experimental data indicates that the testing
results of thin filament-wound tubes with different winding angles under
different end conditions may yield different in-situ elastic stress-strain
relations of a filament layer under infinitesimal deformation. This is not
surprising because in at least two comprehensive and detailed sets of
experimental results (Hull, D., Legg, M.J. and Spencer, B.,, "Failure of
glass/polyester filament wound pipe," Composites, Vol. 9, pp. 17-24, 1978 and
Spencer, B. and Hull, D., "Effect of winding angle on the failure of filament
wound pipe,” Composites, Vol. 9, pp.263-271, 1978; Uemura, M. and Fukunaga, H.,

"Probabilistic Burst Strength of Filament-Wound Cylinders Under Internal

Pressure,” J. Composite Materials, Vol. 15, pp. 462-480), there are appreciable
and even substantial discrepancies in both the measured axial strain and the
measured circumferential strains among supposedly identical tube specimens under
the same pressure load. While other reports sometimes claim good agreement
between the test results and the prediction of the elastic response of a filament
layer from constituent elastic properties, such reports do not include sufficient
test data (corresponding to tubes with identical or different winding angles
under both the closed-end and the open-end conditions) to show the consistency
of prediction. The apparently significant variations in the specimen and the

resulting differences in the elastic properties of the filament layer suggest



that, for a particular type of filament-wound structure, the constitutive
properties of a peneric filament layer can be ascertained only to within an
appreciable margin of error by repeating experiments on several specimens and
calculating the average properties and their standard deviations.

The rcsponse of the filament layer in the nonlinear range of deformation
is characterized by the dependence of the intrinsic stress components relative
to the filament and transverse directions, ¢;, 0, and r,;, upon the history of the
corresponding intrinsic strain components €¢;, e, and vy,;,. Because of the limited
types and ranges of deformation histories attainable in tube experiments, such
experiments cannot provided the complete information of the material behavior
needed to formulate the general inelastic constitutive equations of a filament
layer. However, the experimental data may be used to provided constitutive
equations with a limited range of applicability, i.e., intended for those
applications in which the filament layers in a structure are subjected to
deformation histories similar to those experienced in tube tests. It is with
this objective in mind that we investigate, in this chapter of the present work,
the kinematics and mechanics of deformation of a filament-wound tube which
generally involve large intrinsic shear deformation of a filament layer. It is
found that the experimental results of a tube with *45° winding angles provided
sufficient information for determining the initial intrinsic shear modulus G,
referred to the material axes of the layer, as well as the incremental modulus
in the subsequent states of deformation. The results also provide an additional
relation among the initial or incremental compliances 1/E,, 1/E, and v;/E;.
Additional relations among the initial compliance coefficients may be obtained
from the experimental data of tubes with different winding angles or different

end conditions. Assuming linearity of the layer response in the filament




direction, one may use the experimental data of filament-wound tubes to formulate
an empirical constitutive equation involving two nonlinear material functions,
and it is found that the test results under the open and clesed end conditions
yield material functions that are in approximate agreement.

Once the nonlinear or incremental constitutive equations of the filament
layer have been formulated by a combination of theory and experiment, the
equations can be applied to filament-wound structures to predict its response to
external loads. Integration of the expressions of the increme:::al stresses (in
terms of the incremental strain field in each filament layer) across the
thickness of a filament-wound structure yields the dependence of the incremental
force and moment resultants on the increments of the middle-surface strains and
the curvatures of the composite shell These incremental relations are updated
in each stage of the solution process to obtain the solution for the next step

in terms of the results of the preceding step and the incremental load.

2, Deformation of a filament-wound tube under internal pressure
2.1 Finite deformation of a filament-wound tube

Consider a thin filament-wound tube with alternating layers of filaments
oriented at +a, and ~a, angles with respect to the longitudinal axis of the tube.
Assume that the tube is subjected to a uniform internal pressure p., with or
without an accompanying axial load, so that the stress and strain in the tube are
independent of the axial and circumferential coordinates z and §, at least in a
section of the tube away from the two ends. In each layer of filament, we define
(local) orthogonal material axes 1 and 2 along and perpendicular to the
tangential direction of the filament. Then the extensional strain along the

filament direction, ¢, , is small if the longitudinal elastic modulus of the
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filament is significantly greater than the elastic moduli of the resin material.
In this section, we restrict our attention to the special case in which the
tube deforms without twisting, so that the longitudinal and circumferential
material lines are mapped into the corresponding lines of the deformed tube.
This condition is approximately valid if the tube has an equal number of layers
with +a and —a winding angles and if it is subjected to no twisting moment. More
general deformations including the twisting effect are considered in Sec. 2.2.
A pair of neighboring filaments in a filament layer with the winding angle
ta,, and another pair of neighboring filaments in a layer with the winding angle
-a,, form a rhombus. In the undeformed state, the diagonal length of the rhombus
along the axial direction of the tube is 2L cos a,, and the diagonal length along
the circumferentiul direction is 2L sin a,. After deformation, these diagonal
lengths change to 2L{l+¢;)cos a and 2L{1+¢;)sin a, respectively, where a is the
winding angle in the deformed state (Fig. 1). The stretches (i.e., the ratio of
the deformed curve length to the initial curve length) in the axial and
circumferential directions of the tube are given by
A; = {2L(14¢,;) cos a)/{2L cos a,} = (l+e;) cos a /fcos o, ,
Ag = {2L(1+¢4) sin a}/(2L sin ay) = (l4¢,} sin e /sin e, . (2.1
Hence the ratio of the deformed area of the rhombus to the initial area is
A, Ay = (1+cl)2 sin 2a /sin 2a, . (2.2)
This area ratio must be equal to the product of the stretch along the filament
direction, l+e¢;, and the stretch along the perpendicular direction, l+e; . It
follows that
l+¢; = (1l+4¢;) sin 2a /sin 2q, . (2.3)
While the extensional strains ¢, and ¢; are usually small in the states of

deformation before failure of the tube, the resin matrix between two neighboring
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fibers may be subjected to a very large shear deformation. In a filament-wound
layer, material lines initially perpendicular to the filaments become non-
orthogonal to the deformed filaments. The reduction in angle, <7, , may be
determined by considering the deformation of the right triangle ABC in Fig. 2a
into the triangle A'B'C’' in Fig. 2b. Here the undeformed material lines AB and
AC are along two adjacent sides of an undeformed rhombus, and the deformed
material lines A'B’ and A'C’ are along the corresponding sides of the deformed
rhombus. Using the relations
A'C' = (l+4€,) AC, A'B' = (1l+¢,;) AB, AC = AB cos(n-2a,)},
A'D' = A'B' cos(n-2a), B'D' = A'B’ sin(n-2a),
where D' is the orthogonal projection of the point B’ on the line A'C’, we obtain
C'D' = A'D'-A'C' = (l+¢;} AB lcos(m-2a) - cos(m-2a,})}
- A'B' {cos 2a, - cos Za}l,
Substitution into tan v, = C'D"/B’'D’' yields the following result
tan y;; = (cos 2a, - cos 2a)/sin 2a . (2.4)
Although +v,; is not a tensorial component of a finite strain tensor with
respect to the orthogonal axes 1 and 2, it may be used as a measure of the in-
plane shear deformation of the filament layer. Equation (2.4) indicates that,
for the type of deformation considered here (without twisting and uniform in each
r-f surface), 7, depends only on the initial and deformed winding angles a,.
From Eq. (2.1) we obtain
2,% cos?o, + g% sinfa, = (1+¢y)% .
Hence the extensional strains ¢; and ¢; are given by
€, = (2,2 cos?o, + A% sinfa, )% -1, (2.5)
€2 = A Ag/(L+eg) = 1 = X, 25(2,2 cos?a, + Ag? sin?a, )72 -1

- (1% cos%a, + Ag? sin®a, )% (sin 2a / sin 2a,) - 1 . (2.6)
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The expressions on the right hand sides of Egqs. (2.4)-(2.6) involve only the
axial and circumferential stretches, X, and )y , and the initial and deformed
winding angles. The constant axial stretch X, in the tube and the values of a
and X; on the exterior surface of the tube may be directly measured in tube
experiments. 1If the thickness-to-radius ratio of the tube is small, then a and
g vary only slightly across the thickness of the tube, so that the values of
these quantities in the interior region of the tube may be approximated by the
measured values on the exterior surface.

From eliminating (l+e¢;) from Eqs. (2.1) and (2.2), we obtain

(X; cos ay)? + (X sin ay)? - A sin 2a./sin 2a = 0.
This relation among the three measurable quantities X;, X, and a is a consequence
of the assumption that the tube experiences no twisting deformation. If this
assumption is remecved, then 1,, X; and a become independent kinematical
variables,

The measured data of a, X, and 3; determine the intrinsic strains of a
filament layer with respect to the material axes of the layer according to Egs.
(2.4}-(2.6}, and the latter strains determine the intrinsic components of stress
through the (generally nonlinear and inelastic) constitutive equations of the
layer. The constitutive equations are needed to solve the successive states of
deformation and stress in the tube under increasing Ileoads. Conversely,
experimental data of the relation between the load and deformation mzy be used
to infer the constitutive equations of a filament layer referred to the intrinsic
axes 1 and 2. A major concern in the following analysis is the determination of
the constitutive behavior, both in linear and nonlinear range, of a filament
layer from the experimental data of filament wound tubes with various winding

angles.
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2.2 The _strain field

In a thick tube of mean radius R* and thickness t, subjected to a uniform
internal pressure load, the stress components depend on the radial coordinate r,
but are independent of the coordinates z and § (Fig. 3). In the absence of body
force, the equilibrium equations reduce to

d{r o;)/dr = a,, d(r? r_4)/dr = O, d(r r_,} = 0. (2.7
The last two equilibrium equations together with the traction boundary conditions
7.4 = 7., = 0 on the outer surface r = R"+t/2 yield the following result in the
entire tube:

Trg = Tre = 0. (2.8)
This implies that the radial direction is a principal direction of stress. Since
the layers are composed of orthotropic material and the radial direction is an
axis of orthotropy, it follows that the same direction is also a principal
direction of strain. While the wvalidity of this conclusion requires the
orthotropy of layers, it is not dependent on the material response being elastic
or linear.

Since the radial direction is a principal direction of strain, and the
intrinsic components of strain are independent of the coordinates z and ¢, the
deformation of the tube is characterized by a finite strain field whose right
Cauchy-Green tensor (for the definition of this tensor see Truesdell, C. and
Noll, W., Non-Liner Field Theories of Mechanics, Encyclopedia of Physics, Vol.
111/3, Springer-Verlag, New York, 1965, p. 33) has the form

C=220 0, + 32 kk+ 2210+ p (ig k + ki, (2.9)

where (i, i3, K} is the orthonormal set of cylindrical base vectors at the

undeformed position of a material element.

The cylindrical surfaces r = constant are material surfaces. That is,
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filament sheets of initial radius R deform into cylindrical surface of radius r
= f(R). We have
Ag = r/R = £(R)/R , A, = dr/dR = £'(R). (2.10)
A region in an undeformed filament layer bounded by a pair of axial material
lines and an orthogonal pair of circumferential lines deforms into a region
bounded by two intersecting pairs of helices in the deformed filament layer (Fig.
4). For a complete tube, the uniqueness of the axial displacement (i.e., the
axial displacement at # = 0 must agree with that at # = 2n) requires that the
deformation maps circumferential material lines in an undeformed filament laver
into circumferential material lines in the deformed filament layer. Hence the
deformation gradient tensor has the form
F=xei.+x kk+xei +De Kk,
= f'(Ry e, i, + », Kk k + (f(xr)/R) e; i, + D g, k, (2.11)
where (€., &g, K} is the orthonormal set of cylindrical base vectors at the

deformed position. The last equation characterizes the finite deformation of the
tube in terms of the deformation parameters A, = l+e¢, and D and the radial
deformation function r = f(R).

Notice that while the analysis of Sec. 2.1 was based on the assumption of
vanishing twisting deformation, the finite deformations considered ir this

section are not subjected to that restriction.

2.3 Scissoring action between the filaments of altermating layers

In the preceding analysis, we obtained kinematical results referring to the

deformation of the tube as a homogeneous continuum. The kinematical tensor C

and F given Egqs. (2.9) and (2.10) are macromechanical quantities that

characterize the averaged deformation of the fiber phase and the matrix phase in
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a volume element of the composite material. The actual deformation of the two
phases at the micromechanical level is very complex. The macroscopic shear
deformation <v;, is often contributed largely by severe shearing in the narrow
matrix region between adjacent filaments on the same cylindrical surface r =
constant. Likewise, the macroscopic strain ¢, generally has uneven contributions
from the fiber and matrix phases. These considerations are important for
understanding the physical factors affecting the gross response of the composite
material, However, most aspects of the deformation at the micromechanical level
need not be scrutinized if the objective is to formulate gross constitutive
equations of the composite material using a phenomenological approach, and if the
two phases coustituting the composite are dir.cicvred in a regular or continuous
pattern in a volume element of _he size comparable to a finite element for
subsequent macromechanical aizlysic.

In filament-wound structures, the density and orientation of the filaments
is either constant or varies continuous within certain strips of each filament
layer. Across the thickness direction of a filament-wound vessel, the
orientation of the fibers has a sequence of discontinuous changes. Therefore,
while macroscopic averaging of the stresses and strains of the two phases is
legitimate with respect to the in-plane coordinates of a filament sheet, it
should be examined and used more carefully with regard to the thickness
direction. In fact, if two adjacent filament layers have initial winding angles
* o, and deformed winding angles * a, then the filaments ol one layer rotate
relative to those of the other layer during the deformation. This relative
rotation of two crossing fibers has no direct effect on the matrix material in
the interior of the filament layers (that is, in the region away from the skins

of layers), but it introduces a severe shearing strain v,, in the thin and small
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matrix region between two crossing fibers near the point of crossing, where r is
the thickness coordinate and ¢ is associated with the circumferential direction
of a polar coordinate system (p, ¢) with the origin at the point of crossing.
This scissoring effect at the crossing points of fibers effectively results in
a distributed couple moment acction (i.e., a couple stress) from one filament
layer to the adjacent layer with the opposite winding angle (Fig. 5). The effect
of the couple moment action tends to reduce the relative orientation angle from
2a towards the initial value 2a,. If we consider a rectangular element of area
AA, taken from one filament sheet with the orientation angle +a, which contains
only one fiber crossing point and which has the edges parallel either to the
global coordinate axes z and § or to the material axes 1 and 2 (Figs. 6a and 6b,
respectively), then the upper and lower faces of the element are each subjected
to a clockwise couple moment m,AA which tends to restore the deformed orientation
angle a to the original angle a,. The moment equilibrium of the element requires
that these two moments be balanced by a counterclockwise moment of the magnitude
2m,AA, which can only be produced by the macroscopic shearing stresses r,; and
74, in Fig. 6a or by the macroscopic shearing stresses r;; and r,; in Fig. 6éb.
It follows that the macroscopic stress tensor o,, for a filament layer cannot be
symmetric, and the differences in the two in-plane components of the shearing
stress are determined by the distributed couple moment m, between the adjacent
layers according to
Tiz = T21 = Tap = Ty = 2Mg.

It is reasonzblc to make the constitutive assumption concerning the
scissoring action that the distributed couple moment m, depends essentially on
the change in the orientation angle, a-a,, i.e., for a given a,, m, is

essentially a function of a. For deformations of filament-wound tubes without
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Fig. 5: Scissoring action at a filament cross-over
puint and the resulting distributed wmoment between
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twisting, Eq. (2.4) indicates that o depends only on the shearing strain v,,.
Consequently, the non-symmetry of the in-plane shearing stresses, ry, - r,,,
depends essentially on 7v;; only (the functional relationship is determined by the
initial winding angle @,). This conclusion implies that, in formulating the
gross constitutive equation of a filament layer, no additional kinematical
variable need be included. The three intrinsic stress components o,, 0, and rq;
are determined constitutively by the histories of the three strain paramerers ¢,
€2 and 7y,. The stress tensor is generally not symmetric and the difference in
the in-plane stress, 7y, — r,;, depends essentially on vi,.

Although the consideration of the scissoring effect around the fiber cross-
over point does not introduce additional kinematical variable in the (nonlinear)
constitutive equation of a filament layer, the severe shear deformation of the
resin material in the cross-over region may constitute an important dissipative
mechanism with significant effects on the inelastic behavior of the layer.

2.4 Infinitesimal and incremental deformation

The characterization of special axisymmetric deformations of a tube (i.e.,
axisymmetric deformations that are also independent of the axial coordinate z)
given in Sec. 2.2 reduces, in the case of infinitesimal deformation, to the
following expression for the infinitesimal displacement functions along the
axial, circumferential and radial directions

u, =z €, , u =Dr z , wo=wir) . (2.12)
Naturally, rigid-body displacements may be superposed without affecting the
stress in the tube.

A finite deformation may be decomposed into a series of incremental
deformations. The displacement functions in each incremental step have the form

given in Eq. (2.12). The components of the incremental strain are Ae,, ey =
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Aw(r)/r and Ay, - 4D r, where Aw is the incremental radial displacenent.

Let Ae; and Aa denote small changes in the filament strain and in the
deformed winding angle resulting from an increment in the load. Then, by
differentiating Eq. (2.3), we obtain the following relation for infinitesimal
increments

Ae; = (sin 2a /sin 2a,) {a€; + 2{1l+¢;) ctn 2c Ac) . (2.13)
In an advanced stage of deformation of a tube with relatively stiff filaments,
the filament strain increment Ae; is wusually small compared to the angle
increment Aa. Then the algebraic sign of (cos 2a /sin 2a,)Aa determines the
algebraic sign of A¢; . The sign of Ae¢; determines whether the spacing between
the neighboring filaments increases or decreases in continued loading, and has
a significant effect on the failure mode of the tube.

2.5 Linearized oy _incremental constitutive relation

At each step in the loading process, the stress and strain increments in

each layer are related by the incremental constitutive relation:

[ de, M ay;; aypy apy a; bo,
4 beg _ aj; az; az ax Aoy

A€, a3 day 4as3 asg Ao, (2.14)
\ ~87p2) | 81 4dp¢ 4d3g dgg -4rg,

where [a;;] is the incremental compliance matrix of the particular layer. Since
the layers are very thin, the dependence of a;; upon the radial coordinate r
within each thin layer due to slight variation of the stress history in the layer
may be neglected. Consequently, at each stage of loading, we regard the
incremental compliance matrix as a constant matrix within each layer. The matrix

may vary from layer to layer due to different stress and strain histories of the

layers.
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Equation (2.14) may be partially inverted to yield expressions of Aeg, Ac,,
Ao, and A74, in terms of Agy, Ao,, Ae¢, and Ayy, = AD r. We adopt the notation of
Lekhnitskii

Bij = ay; - a;; a;y/ap for i,j » 1. (2.15)

From the first row of Eq. (2.14) we obtain

bo, = (Le, — ay; Aoy — a,3 Ao, + aye ATg)/ay;.
Substitution into the last three rows of Eq. (2.14) yields

beg = (ayz/ay)le, + By Bog + By3 80; = Pog A7y,

Aer = (ay13/ay)le, + B3 Bog + B33 80, = Pag ATy,

= &Yy, = (ajs/ay)le, + fog Aoy + P35 L0 — Peg BTg-
By eliminating Ar,, from the last three equations we obtain the expressions of
4ey and Ae, in terms of Ae,, Aoy, Ao, and Avyg, = AD r. Corresponding expressions
can be subsequently obtained for Ar,, and Ac,. The results are

Aw/r = Aeg = ([; Ae, + ¥ Loy )/Ty - & Lo, /T — AD (B /Bee)T, (2.16)

d(aw) /dr = Ae; = (ay3 age — 416 a35) 8¢z /Ty + (B3 Bss — Bz6 Bas) Bog /Bes

+ (B33 Bes ~ Bas’) 80, /Bes — AD (B3 /Bes)T. (2.17)
Afgz L (als Afz /all + ADr + ﬂZB AO’G + ,635 Aa-)/ﬁ55 . (2.18)
Aaz L lass Afz + ayg AD r - Fz Aas + F3 Aa:}/rl. (2.19)

where the symbols Iy, I';, I';, ¢ and ¥ are defined by
Ty = a1Bes = andes - aie’,
Tz = aj; agg — aj5 az.
I3 = 236 a3 = a13 ags (2.20)
® = ay) (Bas Bas = B2z Pes)
¥ = ay; (B2 Bes — Bz6”)
Substituting Egs. (2.16) and (2.17) into the compatibility equation

Ae, = d(r Aeg)/dr,
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and making use of the first equilibrium equation for the incremental stress,
d(r aAo.) = Aog, we obtain the following differential equation
d?(r Ac.)/d(4n r)?2 - A2 r Ao, = H AD 1% - K A¢, T, (2.21)
where
A% = (B33 Bes = B36”)/ B2z Bss = B26°)
H = (2 Bz = Bae)/(Baz Bes - Bae?) . (2.22)
K= (I + Py)/¥ .
In the i-th layer, the general solution of the differential equation is
r Ao, =~ A, (r/R")* + B, (r/R")™ + H AD r?/(4-3%) - K Ae, r/(1-2%), (2.23)
T Aog = M (r/R")* - AB(xr/R")™ + 2H 4D r?/(4-3%) - K A¢, r/(1-2%), (2.24)
where the constants A; may be determined, in terms of the deformation parameters
AD and Ae¢,, from the boundary conditions (on the interior and exterior surfaces
of the tube) of Ao, and the continuity conditions of Ao, and Ae¢y across all
interfaces. The solutions for the radial and circumferential stress increments,
given by Eqs. (2.23) and (2.24), may be substituted inte Eqs. (2.18) and (2.19).
The resulting expressions for Arg, and Ao, are then substituted into the

following equations for the increments in the axial force and the twisting moment

o, (open end tube)
AF,-):” Ao, r dr df =

m(R" - t/2)% ap, (closed-end tube) (2.25)
AM,-):” Arg, r? dr dé = O, (2.26)

where Ap is the uniform pressure increment and where the summations are taken
over all layers. The last two equations determine the deformation parameters AD

and Ae,.
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3. Solution of a multi-laver tube in infinitesimal

or incremental deformation
An analysis of infinitesimal axisymmetric deformation of filament-wound
tubes (assuming the deformation is also independent of the axial coordinates z)
has been presented by Sherrer (Sherrer, R.E., "Filament-wound cylinders with

axial-symmetric loads,” J. Composite Mat., Vol. 1, pp. 344-355, 1967).

Additional studies have been performed by Pagano {Pagano, N.J.. "Stress gradients

in laminated composite cylinders,” J, Composite Mat., Vol. 5, pp. 260-265, 1971)
and others. The following analysis and its results provide explicit relations
invelving the material parameters and the solutions. These relations provide the
basis for the determination of certain material parameters from the experimental
data of filament-wound tubes under internal pressure load. The present analysis
also suggests a simpler solution algorithm for a filament-wound tube with
alternating layers.

3.1 Linearized and incremental problems for a filament-wound tube

For the linearized problem concerned with small deformations of the tube,
the elastic compliance coefficients a,; and f,; are material constants. For the
incremental problems associated with large deformation, these coefficients change
with the local deformation history. In each particular thin filament sheet, the
coefficients change as deformation progresses. At any stage in the deformation
of the tube, the compliance coefficients are functions of the radial coordinate
because the deformation history depends on the radial coordinate. However, in
the case of a thin tube subjected to a negligible twisting deformation (t/R small
and D = 0), the intrinsic extensional strains ¢; and ¢, are nearly identical for
all filament sheets and, with the exception of the sign change from +a layers to

-a layers, the intrinsic shear deformation v,; are also nearly identical in
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magnitude. As the deformation continues under an increasing load, the compliance
coefficients of all +a layers evolve in nearly the same way and they either
remain equal to or differ only in algebraic sign from the corresponding
coefficients of the -a layers. The coefficients belonging to the latter type are
a5, azg, ays, Bz and Pi;5. In the -a layers their values are replaced by -apg

-azg, =azg, =-P¢ and -fs. It follows that, in each step of increment, the
parameters A and K in the differential equations for the incremental problem, Eq.
(2.21), are the same in all layers, whereas the parameter H of a +a layer is
replaced by -H in a -a layer.

If the twisting parameter D is not small, then the preceding remarks
concerning the relation between the compliance coefficients and the parameters
A, K and H of the +a and -a layers are only approximately valid in the case of
infinitesimal deformation but not for incremental deformations in the range of
large shear strain, because the deformation evolves in such a way that the state
of strain in a -a layer ceases to be related to that of a +a layer by a mirror
reflection.

3.2 Solution of rhe linearjzed or incremental problem

Instead of solving directly for the unknown coefficients A, and B;, it is
convenient to consider A,, B; and the jumps of A; and B, across the interfaces of
the layers. Let [¢], denote the jump of ¢ across the i-th interface, i.e., the
interface between the i-th layer and the (i+l)-th layer. Then, using Eq. (2.16)
and the interfacial continuity of Ao, and Aw, we obtain

(r bo.}, =0, [r Bogly = 8D v (Byelian/V . (3.1)
Substituting Eqs. (2.23) and (2.24) into the preceding equations, we obtain a
system of equations which yield the following solutions for the jumps [A] | = A,

- Ai and [B]l L Bi‘l = Bl:
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[A}; = AD(r/R™)™A(x?/2X){-[H);(A+2)/(4-2%) + [Bagl,ay /W)

(Bl = AD(r/R")*(r?/20){[H](2-2)/(4-22) - [Bge).ari/¥) . (3.2)
These recurrence relations determine all subsequent coefficients A, and B, from
the first two coefficients A, and B; and the parameters AD and Ae¢,. The last
four unknowns are solved from the boundary conditions of Ag, on the interior and
exterior surfaces of the tube, and the equations for the axial force and twisting
moment, Eqs. (2.25) and (2.26).

A FORTRAN program has been written to implement the linear or incremental
analysis of a filament-wound tube with the open-end or closed-end conditions
subjected to a uniform pressure load. Using the elastic moduli of glass/epoxy
layers suggested in Hull, et al. (Hull, D., Legg, M.J., and B. Spencer, "Failure
of glass/polyester filament wound pipe," Composites, Vol. 9, pp. 17-24, 1978),
we obtain, for a four-layer tube with R*/t = 25,75mm/1.5mm and vanishing M,, the
results for the circumferential strain e; and the shearing strain vy, = D R" on

the middle surface of the tube as shown in Table 1.

Closed-end tube Cpen-end tube
a (Eit/pR%) ¢, (E1t/pR™) 74, (E;t/pR™) €y {E1t/pR" } 74,
35° 2.642 3.66x107 3.283 -7.924%107°
45° 2.021 8.37x1073 2.781 -3.681x1073
55° 1.388 14.94x1073 2.030 6.382x1073
65° 1.005 16.42x107° 1.437 16.77x107?
75° 0.853 6.73x107? 1.120 12.70x1073

Table 1: Comparison of the magnitudes of the circumferential and

twisting strains in tubes subjected to internal pressure load only
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These results indicate that, with a vanishing twisting moment, the shearing
strain vg, resulting from the twisting parameter D varies from about 0.1% to less
than 2% of the value of circumferential strain on the middle surface. The effect
of the twisting deformation should decrease as the number of alternating layers
increases and the thickness of each layer decreases. Furthermore, comparison has
been made between the stress fields in the preceding solutions associated with
M, = 0, and the corresponding solutions with the condition M, = O replaced by D
= 0. The differences in the sclutions are, typically, only of the order 0.1%.

The preceding results indicate that, if a filament-wound tube consists of
equal number of alternati:r layers with +a and -a winding angles, then the
twisting deformatior ' remains exceeding small provided that the tube is
subjected to a varisning twisting moment. When the parameter AD is set equal to
zero, Eq. (2.2) yields zero jumps of the coefficients A; and B, across each
interface. Hence the coefficients are the same in all layers. Furthermore, Eq.
(3.1) shows that Ag, is continuous across layer interfaces. Indeed, as far as
the solutions for the radial and circumferential stress increments Ag, and Ag,
are concerned, the present problem for a balanced filament-wound tube with zero
twisting deformation (D = 0) is exactly the same as that for an equivalent
homogeneous orthotropic tube. When these stresses are determined, the remaining
non-vanishing stress increments Ag, and Ary, are given by Eqs. (2.18) and (2.19),
with AD = 0, The resulting axial stress increment Ag, is continuous across each
interface, while the shearing stress increment Ary, is discontinuous because of

the jumps of a5, Bzs and B;s across the interfaces.
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4. Determinatiopn of the constitutive equations of a filament laver
from the experimental results of a pressure-loaded tube

The solutions of a thin filament-wound tube described in the preceding
section are extremely useful for the experimental determination of certain
constitutive properties of a filament layer by direct tests on filament-wound
tubes. Due to the limited type and range of deformations experienced by the
filament layers in the tube test, the experimental results and the theoretical
solutions cannot provide a complete description of the constitutive behavior of
a filament layer. However, they do provide a great deal of information
concerning linear and incremental constitutive properties, particularly those
aspects relevant to similar but more general applications such as axisymmetric
deforuations of a thick tube.

4.1 Two_approximate equalities for a thin filament-wound tube

If experiments under pressure loading are performed on a balanced filament-
wound tube with a large radius-to-thickness ratic, R/t, then the axial and
circumferential stresses may be considered constant in the tube. They are
approximated by the well known formulae

dog = Lp(R/L) , Ao, = q Ap(R/2t) , (4.1)
where Ap is the internal pressure increment and q has the values 0 and 1,
respectively, for open-end and closed-end tubes. Since Agy, and the radial
coordinate r vary only slightly across the thickness of the tube, the equilibrium
equation d(r &c,) = Agy, implies that Ac_ depends almost linearly on r. Using the
boundary conditions of A, on the interior and exterior surfaces (-4p and O,
respectively), we have

[[ Ao, dA - - @Rt Ap,

where the area integral extends over the cross-section of the tube. By
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neglecting the terms involving AD in Eqs. (2.16) and (2.19), integrating Eq.
(2.16) over the cross-section of the tube, and substituting Eq. (2.19) into
(2.25), we obtain the following approximate equalities wvalid for a thin tube

subjected to a vanishing twisting moment:

ZT,+ ¥ =867 - (t/2R) &, (4.2a)
Z agg - 'y - (t/2R) Ty = (q/2) Iy, (4.2b)

where
Z = de, (t/RAP), 8 = Acy (t/RAP) (4.3)

are easily evaluated in terms of experimental data.

The compliance coefficients a;;, and the parameters Bi;. T1, T2, T3, @ and
¥, which are defined in terms of a;; by Eqs. (2.15) and (2.20), are determined
by the orientation angle of the filament layer and the intrinsic linear or
incremental stiffness parameters of the layer. These intrinsic stiffness
parameters are the extensional moduli along and perpendicular to the filament
direction, E; and E,, the in-plane shear modulus G,;, and the Poisson ratios v,,

and v3,. We denote

x" = 1/E,, y' = 1/E,, z" = 1/Gy,,
u' = v, /E,, v’ w v, /E,. (4.4)
Then,
agg = — (x"+y"=z"+2u") (cos 4a)/2 + (x"+y"+z'4+2u")/2, (4.5a)

Ty = a;,8gs = [(x"+y"=2u")z"-4(x"y"-u"?) ) (cos 4a)/8 + (x'-y")z" (cos 2a)/2
+ (3x"+3y"+2u)z"/8 + (x"y"-u"?) /2, (4.5b)
T, = ajyags - 81585 = | (x"+y"-2u")2"-4(x"y"-u"?) ) (cos 4a)/8
- (x"+y"+6ut)z"/8 + (X'y'-u"?)/2, (4.5¢)
T3 = 2,535 — 8j383g5 = & (W +v") 2" /4= (u'y +v x"+u'v +u'?) /2} (cos 4a)

+ (U=v")z"(cos 2a)/2 + (u'+vh)z2'/4 4+ (UYTHVIXTHUCVIRUTY) /2, (4.54)
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@ = a,,(BeBas - B23Bes) = — z (U'y'=v'x"+u'v'-u"?)(cos 2a)/2
+ 2" Uy HutviHut?) /2, (4.5e)

U = ay,(ByzBes - Bzed) = (X'y" ~ u"¥H)z", (4.5f)
4.2 Use of the data from #45° tube -- Determination_cf the shear modulus G,,

We now consider the task of determining the material moduli E;, E;, G5, vy,
and vy, (or, equivalently, x", y*, 2", u” and v") from the experimental results
of filament-wound tubes with various winding angles *a undergoing linear elastic
deformation. The tubes are assumed to be under an internal pressure load and
both the open-end condition and the closed-end condition will be considered. By
substituting the expressions of Eq. (4.5) into Egqs. (4.2a) and (4.2b), we obtain,
for each winding angle, two equations for x", y", z", u" and v" in the case of
open-end test, and two more equations in the case of closed-end test. Additional
sets of equations for the five materiel parameters may be obtained by testing
filament-wound tubes with different winding angles. These equations provide
conditior, for determining the material parameters.

0f particular interest is the system of equations corresponding to a = 45°.

For this winding angle Eq. (4.5) reduce to

agg = X'+y +2u”, (4.6a)
T, = (x"+y"+2u”)z"/4 + x"y" - u'?, (4.6b)
[, = ~ (x"+y"+2u™)z"/4 + 2'y* - u*?, (4.6¢)
Ty ~ u'y"+v 2 +u'vi+ut?, (4.6d)
& = z'(u'y vk +uviut?) /2, (4.6e)
¥ o= (x"y" - u"?)zh, (4.6f)

Substitution into Eq. (4.2) yields
4{14(2-8) /2" ) (X'y"-u"?) = (Z48) (x"+y +2u")~(t/R)} (W y +v X "4uvi+utl) . (4.7a)

(24q) (X"y"-u"?) = (2Z+(2-q)*z"/4) (X"+y"+2u") = (£ /R) (u"y "+ X +u"v +u"?) L (6. 7b)
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Taking the difference of the last two equations, we have
{Z -8 + (2-q)z") (4(xX"y"-u"2)/z" + x"+y™+2u") = 0.
Using the definitions of x*, y" and u”, one can show that the second factor of
the left-hand side of the last equation is positive. Hence the equality requires
that
1/Gy, = 2" = 4(8-2)/(2-qQ) |cmnya- (4.8)
Substitution into Eq. (4.7b) yields
(24q) (XY =U"2) = (248) | g (XT+y™+2u7) ~ (t/R) Uy +v™x"+u'vi+u?) . (4.9)
For a tube with a small thickness-to-radius ratio t/R, one may neglect the
term involving the factor t/R in Eq. (4.9) in comparison with the remaining terms
(to a certain extent, this approximation is implicit in Eq. (4.1)). This yields
the approximate result:
(x"y"~u"2) /(x"+y"+2u") = p = (Z+8) /(24Q) | qunsa - (4.10)
The last equation yields an expression of u” in terms of x" and y":
ut o= (XT-p) (yT-p) MR - p. (4.11)
Since the expressions of Eqs. (4.9) and (4.10) involve only the
experimental data measured from a particular test specimen {with a = 145° and
with a specific fiber content) at a particular stage of the deformation process,
they may be used to determine the values of z' and (x"y"-u"®)/(x"+y"+2u”) at that
stage of deformation. This is in contrast to the task of determining the
remaining material parameters, which require, in addition, data taken under
different test conditions or from other tubes with different winding angles.
Those other specimens have different stress and strain histories. Hence their
incremental moduli do not evolve in the same manner as the incremental moduli of
the tube with *45° winding angles. Therefore, the incremental shear modulus G,,

and the relation (&4.l1l) among the incremental compliances x", y* and u’
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associated with the deformation of #45° tubes generally cannot be combined with
the relations among the incremental compliances associated with the experimental
results of tubes with different winding angles to yield a complete setr of
equations for determining all incremental compliances. A method that can be used
to circumvent this difficulty, at least to a certain extent, is by first
subjecting several identical tubes with the same winding angle (not equal to 45°)
to the same load history, and subsequently impose incremental loads of different
nature, e.g., by varying the end conditions or by superimposing different axial
loads upon the pressure load.

We note that when the terms involving t/R in Eqs. (4.2) and {4.7) are
neglected in comparison with the remaining terms, the material parameter v" no
longer appears in the governing equations. Thus, in the limit of vanishing t/R,
the stresses in the tube (under axisymmetric deformation with zero twisting
deformation) are unaffected by the Poisson’'s ratio wyy. The latter cannot be
determined by the type of experiments considered here if the thickness ratio t/R
is small.

4.3 Use of the data from tubes with other winding angles

In using the test data from tubes with winding angles different from *45°
subjected to open-end or closed end conditions (where g = 0 and 1, respectively},
it is convenient to refer the incremental stresses and strains to the material
axes parallel and perpendicular to the fibers. The intrinsic strain increments
A¢y, bhey and Ay, may be calculated from the measured axial and circumferential
strain increments by using the transformation rule of the strain, or, in case cf
large shear deformation, by using Eqs. (2.5), (2.6) and (2.4). From the
definitions of Eq. (4.4) we have

be, = X" Aoy - u” A0,  hAey = - Ut Aoy + Y Ao,
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Hence,

Boy = (y"/(x"y"-u"2)) Aey + (u'/(x"Y'-u"?)} Ae,,

Ao, = {u'/(x"y"-u'?)) Aey + (XT/(x"y'-u'?)) Ae,.

Summing the last two expressions and making use of the equality

Aoy + b0y = Ao, + boy = (l+q/2) Aoy = (l+q/2) Rap/t,
we obtain

Ty (YU /(xXTy"-ut?) + Ep (x"uT)/(xTy'-u'?) = 1+ q/2, (4.12)
where

=, = Ae¢y (t/RAp), =, = bey, (t/RAp), (4.13a,b)
and, for subsequent use,

By, = 712 (t,/Rop). (4.13c)

Now, using the transformation rule of the incremental stress, we obtain

Aty csc 28 cos 2(a+f) = (Lo, — A0g)/2 = -(2-q)Rap/(4t),
and, consequently,

csc 28 cos 2(a+B) = —(2-q)2"/(4Z,2), (4.14a)
where 28 satisfies

2 ctn 28 = (Ao, - Aop) /ATy,

= (Aey /A1) (Y -uM)z /(X" y"-u"?) - (Aey/Aryn) (xT-ut)zt/(xMyT-ut?) . (4.14b)
We note that 28 is the angle between the horizontal axis of the Ac-Ar plane and
the radial line through the point (Ac;, 4r,;) in the Mohr's circle for the
incremental stress,.

Expressing 2A in terms of the right hand side of Eq. (4.14b), and
substituting the result into Eq. (l4.a), one obtains, in addition to Eq. (4.12)
another algebraic relation among x*, y*, z" and u*, with E,, 5, E;; and q as
parameters. The two equations reduce to Eqs. (4.8) and (4.10) in the case a =

45°.
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The parameter g may be changed at any stage of the loading process by
changing the end conditions. Consider two identical test specimens under the
same end conditions and subjected to identical pressure loads until the present
state. Subsequently, the tubes are subjected to an incremental pressure load,
with one tube under the open-end condition (q = 0) and the other tube under the
closed-end condition. Then each set of data for E,, E; and T;; (calculated from
the experimental dJata by using Eqs. (2.4), (2.5), (2.6) and (4.13)) with the
corresponding value of q yield two relations among the incremental compliances
according to Egs. (4.12) and (4.14), The solution of the four resulting
relations yield x*, y*, z" and u".

4.4 Determination of the initial elastic moduli in the range of small strain

For the determination of the initial elastic moduli in the range of small
strain, relations based on experimental results of tubes with different winding
angles may be combined to yield a complete system of equations for calculating
the moduli. First, the test data of the *45° tubes are used to obtain z" from
Eq. (4.8) and a relation (Eq.(4.10) or (4.11)) among x", y" and u". Substituting
the relation into Eq. (4.12), we obtain

yHu' = ((14q/2)p/(E1-5;) - 5o/ (E1-Ep)) (x"+y"+2u"), (4.15)
or,

x"+u' = {(—(14q/2)p/(5,-5;) + 5,/(5;-53)) (x"+y"+2u").

The test data of a tube with a » 45° is then used to solve for 28 from Eq.
(4.14a). The solution is substituted into Eq. (4.14b) to yield

(E1/E1) (y'-u") = (52/Epp) (x"-u") = 2 (ctn 28) (p/z") (x'+y™+2u").  (4.16)
Equations (4.15) and (4.16) are two linear relations among the unknowns %", y"
and u" which may be used to express x" and y" as products of u® with factors

involving known gquantities. Substituting the expressions into Eq. (4.10}), we
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obtain a quadratic equation for u®, which is readily solved. The only nontrivial
step in the process of computation is solving 28 from Eg. (4.l4a). This may be
done by the Newton-Raphson iterative scheme.

Hence, the experimental results for two tubes, one with the winding angle
¥45° and another with a different angle, suffice to determine the four compliance
coefficients 2", x", y" and u" associated with the linear elastic behavior at
small strain. The two filament-wound tubes must be identical in material and
geometry except for the winding angle. In particular, the fiber volume content
must be the same.

Hull and coworkers have presented a comprehensive set of test results on
glass/polyester filament wound tubes under both the open-end and the closed-end
conditions, for a = 54°4’ (the "ideal winding angle" for a closed-end tube, see
Hull, D., Legg, M.J. and Spencer, B., "Failure of glass/polyester filament wound
pipe", Composites, Vol. 9, pp. 17-24, 1978) as well as for tubes with other
winding angles (Spencer, B and Hull, D., "Effect of winding angle on the failure
of filament wound pipe," Composites, Vol. 9, pp. 263-271 (1978). Twisting
deformation was apparently not noticeable at least in the initial stages of the
experiments and therefore were not reported. The fiber volume fractions in
different specimens were measured by using ASTM method D2584, and were found to
vary in the range from 0.39 to 0.56. Since the fiber content affects the
composite property, only the relations based on specimens with nearly identical
fiber contents should be combined to determine the initial compliance parameters.
For the six specimens with @ = #45° (including two specimens under the open-end
conditions and four under the closed-end conditions), the reported fiber volume
fraction Vg, the measured initial stiffnesses 1/8 = o04/¢4 and 1/Z = o,/¢, (taken

from Table 1 and 2 in Spencer and Hull, 1978) and the value of G;; = z" and 1/p
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= (x"+y"+2u") /(x"y"-u"?) calculated from Eqs. (4.8) and (4.10) are shown in Table

2, where all numbers except V, have the unit of GPa. Notice that

1/p = ((1+v )E+(14v15)Er} / (1~ ppvp,) - (4.17)
Ve 1/6 172 Giz 1/p

{GPa) (GPa) (GPa) (GPa)
Open-end 0.43 17.7 -30.7 3.61 831.6
Open-end 0.46 15.3 ~23.2 4.61 89.9
Closed-end 0.46 20.8 large 5.20 62.4
Closed-end 0.45 22.8 large 5.70 68.4
Closed-end 0.39 17.8 large 4.45 33.4
Closed-end 0.43 20.4 large 5.10 61.2

Table 2: Response of *45° tubes in the initial small-strain range

(Base on the experimental data of Spencer and Hull, 1978)

There are significant differences in the results (especially in 1l/p,
between open-end and closed-end tubes) which cannot be attributed primarily to
the differences in the fiber volume fraction. The very large difference in the
measured data for 1/Z =~ pR/(te;) of the two open-end tubes and the near 10%
difference in the measured data of 1/8 from the two closed-end tubes with similar
fiber contents (Vy; = 0.46 and 0.45) suggest that the specimen properties are not
consistent, due perhaps to unevenness in fiber property and variations in the
winding process (with the resulting misalignment and waviness of fibers).

The significant differences in the elastic compliance coefficients as
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determined by testing of different tube specimens suggest that, for a particular
material system and winding process, a sufficiently large number of specimens
should be tested to provide information concerning the average values and the
range of variation of the parameters characterizing the behavior of the
composite. It is risky to rely on empirical formulas of the composite elastic
moduli or on analytical predictions of the composite behavior (based on
micromechanical analysis using the fiber and matrix properties as supplied by
manufacturers) as the sole basis for the design and analysis of filament-wound
structures.

Spencer and Hull also presented test results for open-end and closed-end
tubes with other winding angles. These results supply additional relations among
the compliance coefficients. The values of £ and 1/p are based on the test
results of the tube with #45° winding angle, after excluding the data for the
tube w®un *he exceptionally small fiber content (the one with V. = 0.39). Thus
Gy = 1/2° = 5.24 GPa is obtained by averaging the results of the remaining five
tubes, while two values of 1/p, 86.8 GPa and 64.0 GPa, respectively, will be used
for the open-end and closed-end cases, because of the significant differences in
the respective results from the *45° tubes. Using the experimental data of open-
and closed-end tuves with winding angles 35°, 55¢, 65° and 75°, and Eqs. (4.13},
(4.16) and (4.10), we obtain for the open-end tubes the elastic moduli as shown
in Table 3. The results for the closed-end case shown considerable discrepancies
among the tubes with different winding angles and, therefore, are not presented.
These discrepancies are possibly due to the inconsistency of the specimen
material and fiver content s~ that the values of z" and 1/p as determined from
the average experimental results of #45° tubes are significantly different from

their true values for the tubes with other winding angles.
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a 8 Z g =2 2 Ey E; Viz
MPa™! MPa’! MPa! MPa’! MPa™} GPa GPa

35° 67 -27 3.9 36.2 88.3 62.3 20.0 .11

55° 44 =27 20,6  -3.6 66.7 50.7 26.3 .16

65° 33 -19.5 23.6 -10.1 40.2 45.8 19.9 .39

75° 26 -8.3 23.7 -6.0 17.2 43.9 28.0 .22
Table 3: Linear elastic moduli determined from the experimental results

of the open-end,

*45° tube (Gy; = 1/z2" = 5.24 GPa and 1/p ~ 86.8 GPa) and

another open-end tube with a different winding angle.

T2 (MN/m?) oy = 45°
60 p
Oen-end tube _ -~ -
50 =+ GA =0 ”- -
e d Closed-end tube
40+ d GA = O'H /2

304

20

104

Y12
0 . + —— ; +
0.000 0.090 0.020 0.030 0.040 0.050 0.060
Fig. 7: Shear stress vs. sheer strain in

45° tubes under increasing internal pressure
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4.5 Comparison of the nonlinear shear responses associated with the open-end and

closed-end conditions

Figures 5 and 8 of Spencer and Hull (1978) show the data of the axial and
¢ircumferential strains versus the pressure load for open and closed-end tubes
of various winding angles when the pressure increases from zero to the level at
final failure. The data corresponding to a = *45° are used here to obtain the
incremental moduli Gy; and 1/p at the successive stages of deformation. Since
the incremental stiffness of the composite is dependent on the entire history of
deformation, the dependence of Gy; and 1/p upon ¥;; is affected by the present and
past values of ¢; and ¢;. For the sake of illustrating the depcndence of the
incremental moduli on the history, the values of all three strain components at
the successive stages of deformation are shown in the following two tables (Table
4 and 5, respectively, for the open-end case and the closed-end case) with the
corresponding values of the incremental moduli and the pressure. Notice that in
the open-end experiments of *45° tubes, the shearing strain is greater than the
extensional strains by an order of magnitude. In the closed-end experiments, 7;;
varies from two to four times the magnitude of ¢; or ¢;. Therefore, the relation
between 7;; and v,; as suggested by the incremental moduli G,; in the first table
is more representative of the shear response in the absence of significant
accompanying normal stresses, while the effect of the normal stresses is
certainly important in the relation described by Table 5. For #45° tubes we have
142 = (05 - 0,)/2 = (1-q)pR/(2t). Therefore, r;; may be directly associated with
the corresponding value of v,; in the successive stages of deformation. 1In Fig.
7, the results are plotted for both the open-end and closed-end cases. The two
curves are tangential at the origin, because the common slope equals the initial

shear modulus. The relation for the close-end tube deviates significantly from
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linearity at a very early stage of deformation, because of the relatively larger

values of €¢; and ¢, in the deformation of the closed-end tubes.

PR/t €1 €2 Y1z G2 1/p
(MPa) (107%) (107%) (107%) (GPa) (GPa)
10 .05 .05 .94 5.3 150.
20 .10 .10 1.97 4.85 117.
30 .23 .22 3.11 4.39 70.
40 .39 .38 4.56 3.45 59.
50 .61 .60 5.88 3.2 51.
60 .79 .76 8.0 2.5 69.
70 .85 .79 10.5 2.0 95.
80 .97 .88 13.4 1.61 80.
90 1.15 .99 17.8 1.27 61.
100 1.51 1.26 22.4 1.03 23.
110 2.33 1.90 29.3 0.73 13.
120 4.35 3.57 39.5 0.48 5.2
Table 4: Incremental moduli G,; and 1l/p calculate from the large-

deformation experimental results of a *45°, open-end tube
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PR/t €1 €2 Y12 Gz 1/e
(MPa) (107%) (107%) (107%) (GPa) (GPa)
10 .23 .23 .53 5.3 70,
20 .46 .46 1.08 4.7 64 .
30 .70 .70 1.66 3.9 57.
40 .96 .96 2.30 2.9 55.
50 1.30 1.29 3.17 2.0 51.
60 1.63 1.62 4 .33 2.5 45,
70 1.99 1.98 5.69 1.9 51

8o 2.43 2.40 7.32 1.13 27.
90 2.99 2.94 10.2 0.77 27.
100 3,69 3.60 13.7 0.63 21.
110 4,37 4.21 17.9 0.58 19.2
120 5.17 4.92 22.5 0.49 19.9
130 6.10 5.70 28.3 0.43 16.9
140 7.04 6.45 34.0 0.37 16.9
150 8.01 7.17 41.0 0.33 16.8
180 8.92 7.71 49.1 0.28 13.4
190 10.3 B8.58 58.7 0.24 12.4

Table 5: Incremental moduli G;; and 1/p calculated from the

deformation experimental results of a 145°, closed-end tube
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The preceding two tables indicate that, for both the open-end and closed-
end conditions, the incremental shear modulus G;;, decreases monotonically as the
pressure load increases. 8ince the factor (l-v;v;,) is close to 1 for strongly
anisotropic fiber-reinferced compesites, the incremental stiffness 1/p as given
by £q. (4.17) is approximately equal to the sum of the incremental stiffnesses
along the fiber and the transverse directions, characterized respectively by
vitrz)Ey and (1+4vy;)E,. Since glass and carbon fivers show linearly =lastic
axial response before tensile failure, and since the stiffness of the filament
layer in the fiber direction is largely contributed by the elasticity of the
fiber, (l+v;)E; remains almost constant throughout the process of deformation.
Hence the significant decrease in the stiffness 1/p, as indicated in the
preceding two tables, may imply that the incremental stiffness in the transverse
direction eventually becomes negative. A negative incremental stiffness in the
transverse direction is not physically unreasonable. It simply means that, at
a certain stage of deformation, additional positive strain increments Ae; and Ae,
may be produced by increasing the tensile stress o; along the fiber direction
while partially relieving the tensile stress g, in the transverse direction.
4.6 A constitutive model for large deformation of a filament laver

The experimental results of Hull and coworkers for glass/polyester
filament-wound tubes show significant deviation from 1linear stress-strain
relation at even a low level of pressure. Similar nonlinearity at mederate or
large pressure loads were also observed in experiments on filament-wound tubes
with carbon fibers (see, for example, Uemura, M. and Fukunaga, H., "Probabilistic
Burst Strength of Filament-Wound Cylinders Under Internal Pressure,” J. Composite
Materials, Vol. 15, pp. 462-480. A large body of experimental results on tubes

with glass and carbon filaments have been obtained at Redstone Arsenal, Alabama,
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including Technical Report RL-84-11, "Mechanical Property Characterization of the
Sentry Initial Propulsion Test Vehicle (IPTV) Composite Motorcase Materials,” by
Terry L. Vandiver, Technical Report RL-80-13, “Evaluation of Filament-Wound
Composites with Kevlar 49 Filament and Two Resins, HBRF 55A and HBRF 241, By
Hydrostatic Testing," and Tech. Report RL-75-8, "Development cf the filament-
wound composite launch tubes for the SMAWT program,” both by G.A. Cledfeltcr,
U.S. Army Missile Command, Redstone Arsenal, Mavch 1975).

The nonlinearity in response and the inelastic behavior of a filament layer
are primarily due to the severe shear deformation in the resin material.
Constitutive equations that adequately describe these effects may be given in the
incremental form, and the preceding analysis is an initial step in that direction
from a purely empirical viewpoint, with very little regard to the underlying
physical basis such as the plasticity behavior of the resin material and the
effects of microcracking or interface debonding. 1In general, the incremental
compliance coefficients are dependent on the history of strain. A purely
empirical formulation of the incremental constitutive relations over the entire
range of strain space would require a very complex set of expressions, not to
mention an impossibly large amount of experimental data to be used to obtain such
expressions. However, if the results of tube experiments are intended only for
the purpose of formulating constitutive relations with a limited range of
applicability, i.e., limited only to applications in which the geometrical
configurations and loading histories are similar to those involved in the tube
experiments (e.g., monotone loading or proportional loading), then the amount of
the required experimental data may be significantly reduced and relatively simple
empirical constitutive relations may be sought. Such constitutive equations with

a limited range of applicability need not be in the incremental form. A
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functional relationship between the stresses o;, ¢, and 7, and _re . .ns €y,
€; and v, 1s convenient because of the simplicity of formulation and the ease
of determining the material functions from the experimental resul--.

We note that, as mentioned previously, <¥,;, (defined as the reduction in the
angle between two material lines originally parallel and orthogonal to the fiber
direction) is not a physical component of a finite strain tensor with respect to
the intrinsic material directions. Indeed, under the orthogonal transformation
of the coordinates from (z, #) to the intrinsic axes, the components ¢,, ¢z and
.9 transform into ¢,, ¢; and y;; only if the strain is infinitesimal. However,
the most convenient and therefore the most appropriate constitutive equation for
an anisotropic filament layer need not be a relation among the tensorial
components of stress and strain. It is perfectly legitimate to use a
functionally related set of strain variables, provided that one keeps in mind
their original definitions which, in the case of v,,, is given by Eq. (2.4) for
a tube suffering no twisting deformation.

Since the response of a filament layer in the filament direction is
dominated by the linearly elastic behavior of the filament material, it is
reasonable to assume that ¢; depends linearly on €¢; and ¢;, provided that these
strains are small, and that ¢, is not appreciably affected by 7v;,. The shearing
stress r;, depends nonlinearly on +v,;, and this dependence is expected to be
influenced by the transverse strain ¢, because a negative ¢, tends to cause
compression of the resin material between two parallel fibers with the effect of
increasing the resistance of the resin material to shear deformation. This
effect of ¢, upon ry, should be reciprocated by a corresponding effect of vy;; upon
the transverse normal stress o,. The nature of the coupling effect is suggested

by the usual assumption concerning the symmetry of the incremental stiffness
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matrix. Thus, although the general nature of the material behavior is inelastic,
the special constitutive equations intended only for a limited class of
deformations histories with similar geometrical and loading features may still
be expressed in forms suggested by nonlinear elasticity. Consequently, for a
filament layer in a certain restricted range of deformation histories we
postulate the following constitutive equation for o,, o, and 7y, in terms of
€1, €; and 5

01 = S11 €1 + 512 €2,

0y = Sy €4 + S35 €2 = £(7y5), (4.18)

71z = B(r12) - €z £' (9127,
where f and g are even and odd functions, respectively, of the shear strain.

There are a number of previous works dealing with the formulation of

nonlinear constitutive equations of unidirectional composites and filament-wound
layers. For example, Hahn and Tsai (Hahn, H. T. and Tsai, S.W., "Nonlinear

elastic behavior of unidirectional composite laminae,” J, Composite Materials,

Vol. 7, pp. 102-118, 1973} considered nonlinear elastic behavior and introduced
a complementary energy density that is a fourth-order polynomial function of

o,, 0, and ry,. The formulation generally leads to an expression of the strains
in terms of the stresses which, except in some special cases, is difficult to
invert. Elastic relations for the strain components as polynomial functions of
the stress components were also proposed recently by Luc and Chou (Luo, S-Y and

Chou T-W., "Finite deformation and nonlinear elastic behavior of flexible

composites,"” J. Appl. Mech., Vol. 55, pp. 149-155, 1988). Notice that in
practice it is always preferable to use a constitutive equation of the filament
layer with ¢;, €¢; and y;, as independent variables, because these variables vary

continuously across the interfaces of alternating layers (whereas the str-sses

46




may suffer discontinuities) and, in the deformation of thin tubes without
twisting, they do not vary appreciably across the thickness. Furthermore, the
force and moment resultants occurring in the shell equations are calculate by
integrating the expression of the stresses in terms of strains with respect to
the thickness coordinate. While the inversion of a linear stress-strain relation
is a trivial matter, a nonlinear constitutive for the strains in terms of the
stresses Is in most cases extremely difficult to invert.

The direct use of a polynomial strain energy density was also suggested in
the work of Hahn and Tsai. However, their results did include a coupling effect
between the transverse strain and shearing strain. The coupling effect was also
not taken into account in a recent study by Frost (Frost, S. R., "An approximate
theory for predicting the moduli of unidirectionil laminates with non-linear

stress/strain behavior,” J. Composite Materials, Vol. 24, pp. 269-292, 1990), or

in the work of Hashin et al. (Hashin,Z., Bagchi, D. and Rosen, W., "Non-linear
Behavior of Fiber Composite Laminates," NASA CR-2313, April, 1974). When the
coupling effect is ignored, the shearing stress is simply a function of the
shearing strain alone, unrelated to and unaffected by the transverse strain e,.
But the validity of this conclusion is evidently refuted by the significant
differences between the 7, versus 6,, relations of the open-end and closed-end
tubes, as shown in Fig. 7,

Equation (4.18) is proposed because it is perhaps the simplest constitutive
equation for a filament layer that captures the general nonlinear dependence of
the shearing stress upon the shearing strain and, at the same time, includes the
nonlinear coupling effect between the shearing and transverse strains in a way
consistent with the usual assumption of the symmetry of the incremental stiffness

matrix. The linear dependence of ry, on ¢; is the simplest functional relation
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consistent with the assumption that the incremental shearing stiffness increases
with transverse compression (theiefore, decreases with the transverse extension
¢€;), i.e., that the resistence of the material to incremental shearing
deformation is analogous to the law of friction. In contrast, Luo and Chou
("Finite deformation and nonlinear elastic behavior of flexible composites,” J.
Appl. Mech., Vol. 55, pp. 149-155, 1988, see Eq. (9) of the paper) assumed a
coupling between the transverse stress g, and the shear strain v;; in such a
manner that the contribution of the coupling effect to the shear stiffness is an
even function of o,. Their assumption is contrary to the reasonable expectation
that the effect of coupling is dependent on the algebraic sign of o,.

The incremental stress-strain relation associated with Eq. (4.18) is

Aal Sll 512 0 ACI
Aoy [ = S12 S22 -2 £'(73) Aeg (4.19)
47y, 0 - £ (72) 20g" (112)-€2£" (712) ) Avya/2

Since the incremental stiffness matrix reduces to the initial stiffness matrix
when all strain components vanish, one has the following conditions for the
initial derivatives of the functions f and g:
£f'(0) =0, g'(0) = Gy;. (4.20a,b)
Furthermore, since 8;;,, S;; and 5;; are the stiffness coefficients in the range
of small strain, we have
£(0) = 0. (4.20¢)
Otherwise, the material functions f and g and the stiffness parameters 5;,,
Sy, and Sy, in Eq. (4.18) must be determined for each specific type of filament
layer from experimental data. The results are presented in the following section
for the plass/polyester tubes studied in work of Spencer and Hull, on the basis

of their experimental results for the *45° tubes.

48




4.8 Determination of the constitutive functiong f and p from the results of tube
experiments
In testing the #45° tubes under an internal pressure p, we have

o) + 0y = a5 + 0, = (1+q/2) PR/E,

Ti2 = (09 = 0,)/2 = (1-q/2) pR/(20).
Hence Eq. (4.18) yields

£(v12) = (S11¥512) €1+ (S512%53) €; - (1+q/2) pR/t, (4.21)

g(712) = (1-9/2) pR/(2t) + €3 £'(712). (4.22)
The linear elastic moduli §,,+S,; and §,,+5;; are determined from the experimental
results in the range of small strain, as described in Sec. 4.4. The data for ¢;,
¢, and pR/t corresponding to each value of v,, are substituted into the right-
hand side of Eq. (4.21), and this determines the material function f(v;,). The
function so obtained may be differentiated numerically to obtain its derivative
f'(72). Then the values of f’'(v,3), €, and pR/t associated with each value of
71, are substitute into Eq. (4.22) to obtain the function g(vy,,). This procedure
is applied to the experimental results of *45° tubes with both closed-end and
open-end conditions, and the validity of the constitutive equations (4.18) may
e tested by comparing the functions f and g obtained in the two cases. Because
of the significant differences in the calculated values of the linear elastic
moduli corresponding to the closed-end and open-end cases, the stiffness
coefficients $,;+S;; and §,,+S,;, in Eq. (4.2]1) are evaluated separately for these
two cases from the respective experimental data, instead of using a common set
of values. In view of the appreciable discrepancies in the linear elastic moduli
based on different specimens, the material functions f and g determined from the
experimental results in the range of large deformation along different locading

paths are expected only to be in approximate or qualitative agreement. The
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present results for the closed-end and open-end tubes are shown in Figs. 8a and
8b for the function f and in Figs. 9a and 9b for the function g. The approximate
agreement between the two sets of results present a contrast with the significant
discrepancy in the relation between r,; and v,;, as shown in Fig. 7 (see p. 39).

The relation 7y, = (05 — 0,)/2 and the resulting Eq. (4.22) are not valid
in the case of tubes with winding angles different from *45°. Indeed, for such
tubes the values of r;; at the successive stages of deformation cannot be
determined from the measured data. However, Eq. (21) still holds and the data
from such tubes provide independent bases for determining the material function

f(712)-

4.9 Nonlinear constitutive eqguations of the filament-wound structure:

the incremental stress-strain relation of a laminate

The transformation of the incremental stresses and strains from a loecal

tangential coordinate system (x, y) at a point on the shell middle surface
(which, for a circular cylindrical shell, may be identified with the global
cylindrical coordinates z and #) to the material axes (1, 2) in a filament layer

follows the relations

Oeg Aty Aoy b,
Ay - [M(8)] Aey ; poy L = (M(-8)] { boy },

where the matrix ‘M(#)] is defined by

costh sin®é sin 26
[M(8)) = sin%s cos?p - sin 28
—(sin 28)/2 (sin 28)/2 cos 248

Substituting into Eq. (4.19), we obtain
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on S11 512 0 fhf,
Aoy = [M(-8)] { S;; S22 - 2f (M(8)] bey
AT 0 f’ 2(g’' -e,f) BYgy/2

(4.23)
If we adopt the Kirchhoff-Love assumption that the strain increments at a point
(x,7.z) are related to the strain increments at the projected point on the middle
surface (x,y,0) by the relations
Ae, = be° - z Ax,, bey, = Ae,” - Z bk,
Ay = B7y° - Z Axyy,
where 4x,, Ak, and Ak, are the increments of the curvature of the middle surface
during the incremental deformation, then by integrating Eq. (4.23) across the
thickness of the shell we obtain the relation between the increments of the force
and moment resultants, AN, ANy, AN, aM;, aM,, AM,.., and the increments of the
middle-surface strains and curvatures. This incremental relation characterizes
the response of the shell element. In each step of the solution process, the
current of <v,; is computed and the updated values of f’'(v;;}) and g'(y,;) are
substituted into Eq. (4.23) to compute the shell element stiffness matrix for the
next incremental solution by integrating this equation through the thickness of
the shell. Notice that, in the constitutive equation (4.18) for the filament

layer, the stiffness coefficients S;;, S;; and S,; have constant values through

the deformation process and therefoure need not be updated in an incremental step.
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II1. Micromechanics: Calculation of the Constitutive Properties

of a Filament Layer based on the Properties of the Constituents

1. Introduction

A fundamental problem in the mechanics of fiber-reinforced composite
materials is the derivation of the gross (macromechanical) constitutive equations
of a unidirectional composite from the properties of constituent materials. 1In
the case of a filament-wound structure, the problem is to derive the constitutive
zquations of a generic filament layer from the properties of the filaments and
the resin material. Since the filament layers are often subjected to large shear
deformation, and since filament-wound structures show nonlinear responses under
moderate external loads, one should generally consider the nonlinear behavior of
the resin material in a micromechanical analysis for calculating the gross
response of the filament layer. However, a nonlinear and inelastic micro-
mechanical analysis is extremely difficult, As a first step in this direction,
one should choose and develop methodology of analysis and apply it to simple
cases. The methodology, when proved successful and effective, can then be
further developed to investigate more general and realistic cases.

Existing micromechanical studies with the objective of formulating
constitutive equations of composite materials are mostly concerned with the
linearly elastic behavior. Such studies aim to calculate the gross elastic
moduli of the composite on the basis of the known elastic properties of the
constituents. Methods used in the previous studies include variational bound
theorems, and finite-element analysis. The latter method, although more
laborious, can be modified to derive gross constitutive relations including

nonlinear and inelastic response. In this method, an analytical model of the
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composite is used in which the parallel filaments are arranged in a rectangular
or hexagonal pattern and immersed in the resin material. A representative unit
cell consisting of segments of filament and matrix regions is selected and these
segments of regions are divided into finite elements.

An alternative analysis method that is believed to be especially suitable
for the present type of problems is the boundary element analysis. The principal
advantage of this method is that it reduces the spatial dimension of the problem
from three to two or from two to one, and therefore results in drastic reduction
in the number of nodal points and degrees of freedom. Although the available
boundary-element computer codes are mostly limited to elastic analysis,
considerable theoretical progresses have been made, during the last decade, for
applying the boundary element analysis to problems involving plastic deformation.
These progresses have important implications for the solution of micromechanical
problems related to the nonlinear constitutive equations of composites.

In the present work, we demonstrate that the problem of determining the
linear elastic moduli of a unidirectional composite from the elastic properties
of isotropic resin material and transversely isotropic filaments can be solved
by using boundary element analysis codes for plane-strain problem of an isotropic
elastic medium. The computational effort 1is considerably less than the
corresponding solution by the finite-element method, and yet the results are in
extremely close agreement with the previous elasticity sclutions in the
literature.

Further investigation should be conducted on extending the boundary element
method to the determination of nonlinear constitutive equations of a composite
material from the properties of the constituents. As mentioned previously, the

present analysis is only a first step in that direction.
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2. Boundary element analysis of the micromechanical problem for determininpg the

gross_elastic moduli of a composite

In this initial study, we assume that each constituent material of the
composite material is homogeneous and linearly elastic, and that the fibers are
arranged in periodic patterns. Then the calculation of the gross elastic moduli
of the composite can be reduced to a small number of two-phase elasticity
problems (micromechanical problems) for a unit volume cell of the composite
containing one or more sectors of a single fiber and the surrounding matrix.
Each elasticity problem of the unit composite cell corresponds to a particular
type of loading: extension/shortening along or perpendicular to the fiber
direction and longitudinal or transverse shearing. In all loading cases, the
extensional strain along the fiber direction has the same constant value in the
several subregions occupied by the fiber and the resin matrix. The boundary
conditions over the lateral faces of the unit cell may be greatly simplified if
the unit composite cell is chosen appropriately. For example, in the case of a
square or hexagonal array of fibers under an extensional load along the
longitudinal or transverse directions, the unit cell may be chosen in such a way
that, over each lateral face, the normal displacement is a constant and the
shearing stresses vanish. The constant normal displacements on the lateral faces
yield constant (macroscopic) strains of the composite. The resultant normal
forces over the lateral faces of the unit region, or the resultant longitudinal
force over its cross-section, when divided by the respective areas, yield the
gross stress components in the composite. Hence the solutions of the two-phase
elasticity problems for the unit cell yield the stress-strain relation in the
unidirectional composite.

In most fiber-reinforced composite materials of engineering interest the
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resin matrix is an isotropic material while the fibers have transversely
isotropic elastic properties. The elastic moduli of the fibers along the
longitudinal and transverse directions are significantly different, in the case
of graphite fibers. Therefore, if finite-element or boundary-element methods are
used directly to solve general two-dimensional micromechanical problems for the
unit composite cell, the computer code should have the capability to deal with
a material that is not isotropic.

The boundary-element method is ideally suited for the present task. Nodal
points for a boundary-element analysis are picked only on the boundary curve and
on the fiber/matrix interface, No interior nodal points are required. This
reduces the dimension of the problem from two to one and, consequently, provides
great savings in computational effort. Evaluation of the macroscopic stresses
and strains of the composite requires only the knowledge of the nodal forces and
nodal displacements along the boundary of the unit cell and along the fiber-
matrix interface, which are readily provided by the boundary-element analysis.
Finally, the interfacial stresses between the fiber and the matrix, important for
the prediction of failure initiation, are alsc readily available from the results
of a boundary-element analysis. In contrast, conventional finite-element
analysis requires a large number of internal nodes which drastically increase the
size of the problem, but the computational results of the internal nodal
variables may be of little or no practical use.

However, a boundary-element analysis is considerably more complicated in
a case invelving an anisotropic elastic medium than in problems invelving only
isotropic elastic media, because of the complexity of the Green’'s function and
the resulting integral equations for an anisotropic medium. The complication may

be so significant that a finite-element analysis may appear to be a better choice
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in micromechanical problems involving anisotropic fiber regions.

It is shown in the present work that, in the case of an isotropic resin
matrix and transversely isotropic fibers, a micromechanical problem of the unit
cell associated with the determination of one or more gross elastic moduli of the
unidirectional composite can be transformed mathematically into a coupled plane-

strain problem for two jisotropic elastic media, whose isotropic moduli are

related to the true meduli of the fiber and the resin materials according to
simple relations. This mathematically *ransformed problem requires the
continuity of the tractions across the fiber-matrix interface. However, across
the same interface the displacement components u' and v' of the transformed
problem (along the coordinate directions X and y, which are the symmetry axes of
the unit cell) are generally pot continuous but may suffer jumps that are
proportional to the mismatch between the Poisson’s ratios of the resin matrix and
the fiber (where the latter ratioc is associated with lengitudinal shearing).
Furthermore, along the boundary curve of the unit cell, the displacement boundary
conditions of the mathematically transformed problem must be modified accordingly
so that, for the fiber region as well as the matrix region, the boundary
displacements are consistent with the interior displacements. Since the
Jiscontinuities of u’ and v’ of the transformed problem are known along the
interface, they are no more difficult te handle in a boundary-element analysis
than, for example, the interface continuity conditions of the same displacement
functions in conv-:ntional interface problems.

In summary, the present work implies that the simpler integral equations
associated with the plane-strain boundary-element analysis of isotropic elastic
media are applicable to, and adequate for, the micromechanical analysis of

unidirectional composites consisting of an isotropic resin material and
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transversely isotropic fibers, provided that the problem is appropriately
transformed into a modified, plane-strain problem with suitable equivalent
isotropic moduli for the fiber region and with suitable discontinuities of the
in-plane displacements across the fiber-matrix interface.
3. Unit Composite Cell Subjected to a Uniform Longitudinal Strain Load
Let E, and v, denote, respectively, the Young's modulus and the Poisson's

ratio of the isotropic resin material. Let E; and E; be the elastic moduli of
the transversely isotropic fibers in the longitudinal and the transverse
directions, G;;, and v,; be the shear modulus and the Poisson’s ratio associated
with transverse shearing of fibers and G;;, v,;; and v,. be the corresponding
quantities associated with longitudinal shearing such that wv;»/E, = v;;/E;. Then
Gy, = Ejp/2(1l+v,,;) because of the transverse isotropy of the fibers. We first
consider the loading case when the unit composite cell (defined by a rectangular
or square region -a/2 < x < a/2, -b/2 <y < b/2) is subjected only te a uniform
extensional strain along the fiber direction, ¢, = ¢,. The boundary conditions
are
-0 on x = * a/2,

v =0, r., =0 ony =*b/2, (1}

For this loading case it is obvious that in both the fiber and matrix

regions one has

Yz ™ Tyz = 0, Tz = Tyy = 0. (2)
In the fiber regions, the remaining stress components o,, oy, 0, and 7, are
related to the strains ¢,, ¢,, ¢, and v, by the generalized Hooke's law:

o, = ¥z (0x + 0y) + Ejeg, Ty = Txy/G2z
€x = (Ux'szay‘“21az)/Ez = 0, (1-vyovp,) /E; - Uy(V22+V1sz1)/Ez = Vi12€9. (3}

€y = (0y=v320,~v210,) /By = 0y (l-vov5,) /E; — o (voatvyovp)) /By — vyzes,
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We consider an equivalent isotropic material for the fiber region with the
Young’s modulus E; and Poisson’s ratio vy given by

Ee = (14v35) 2 (14205540505, ) Ea, ve = (votvipra}/(14v;) . (4)
Then the fictitious isotropic material has a shearing modulus, G;, equal to G,
of the a.-tual fiber material:

Ge = Eg/2(1+vs) = E3/2(1+4vq3) = Gy
From Eqs. (3) and (4) we ohtain

€x * Y126, = ox(1-v®) /Er - aye(l+vg) /Ey,

€y + Vviz€, = — awe(l4vg) /B¢ + o,(1-v¢*) /Eg, (5)

Ty = Txy/Ct.
In the matrix region we have

€x + Vnto = 0x(1-0p?) /By — g (14vy) /E,,

€y + Vpto = — O (l4u,) /By + 0y (1-vg?) /By (6)

Ty = Txy/Ca-
and

g, = Eneg + vo(oy + 0y) (7)

The original elasticity problem for the unit composite cell will be
transformed into a modified micromechanical problem in which the fiber material
is replaced by the fictitious isotropic material. The solutions of the original
micromechanical problem and the modified problem shall have identical stress
fields o4, o, and 7, in both the fiber and the matrix regions. However, the
extensional strains ¢,’ and ¢, of the modified problem shall be related tc those
of the original problem by

Ep' =€

< * VizEg, €= €y + v o€, in the fiber region, (8a)

o= ey + ovge,, €, = ¢

€y v

y * Vpto in the matrix region. (8b)

Now the constitutive equations of the fictitious isotropic material and the
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matrix material yield
€' = (og—vio,~veo,')/Eg, ¢y’ = (oy—veo,-ve0,')/E; in the fiber region,
€x' = (o vpo,~ve0,')/Ey, €' = (oy—vpog-voo," ) /E; in the matrix region.

These two set of expressions are consistent with Egs. (5), (6) and (8) if and

only if
g,' = ve(oy + oy) in the fiber region
o' = vp(ox + ay) in the matrix region. (D)

The two equalities of Eq. (9) imply that the scolution of the modified problem
satisfies the plane strain condition:
€, = 0.
Equations (Ba) and (Bb) imply that the displacement functions of the
modified micromechanical problem, u’ and v', must be related to the displacement
solutions u and v of the original problem according to

U' = U+ v, V' o= W o Ve in the fiber region

r L}

u’ = u 4+ e X, v o= v o+ ey in the matrix region (10)
Since the actual displacements of the original problem, u and v, are required to
be continuous across the fiber-matrix interface, across the same interface the
functions u’ and v' of the modified problem must have the discontinuities

[u'] = (vp = vi2)eeX, [v'] = (v - Vi) €Y, (11)
where [u’'] and [v'] denote the jumps of u' and v', respectively, across the
interface from the fiber region to the matrix region. Furthermore, while any
traction boundary condition of the original problem is preserved without change
as a traction boundary condition of the modified problem, displacement boundary
conditions for u and v transform into different conditions for u’ and v’ in a way

consistent with Eq. (10). Hence the displacement boundary conditions of Eq. (1)

become
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u' = % veega/2, v' =% peeb/2 on the exterior boundary of the fiber,
u’ =% v a/2, v =% yoe b/2 on the exterior boundary of the matrix
region. (12)

The solution of the modified micromechanical problem may be obtained
numerically by discretizing the boundary integral equations for the matrix and
fiber regions, occupied, respectively, by the isotropic resin material and the
fictitious isotropic material with the elastic moduli E; and v;. The numerical
solution scheme must implement the continuity of the tractions and the jump
conditions of the displacements, Eq. (11), across the interface of the two
regions. The solution scheme must also implement the mixed boundary conditions
on the exterior boundary of the fiber and matrix regions, which are provided by
Tyy = 0 and Eq. (12).

Once the stress and displacement solutions of the modified problem, o.’,

oy', Tg', 0;', ' and v’ are determined (with ¢,’ identically zero), the actual

stresses and displacements of the original problem are given as follows

gy = 0.', oy, = a,’, Txy: = Txy in the whole region
o, = vip(o,+o )+Ee,, U= u'-vjex, Vv = vi-vpey in the fiber region
0, = vg(oyto,)+Eqe,, u = u'-pgex, v = v'-poe,y  in the matrix region

(13
4. Plane-Strajin Deformations of the Unit Composite Cell
We next consider the case when the unit composite cell is subjected to a
plane-strain deformation
u = u(x, v, v = v(x,y), €, = 0. (14)
There are two particularly important problems of this class connected with the
determination of the gross elastic moduli of the composite. From the macroscopic

viewpoint, the first problem is associated with a uniform strain in the composite
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along the x- or y-direction, for example, €, = ¢, and ¢, = 0, and the second
problem is associated with a uniform shear strain v,, = v,. From the microscopic
viewpoint, the first problem is characterized by the following boundary
conditions for the unit composite cell:
u=0, Ty = 0 on X =% a,
Vo= €Y, Tyy = 0 ony==b, (15)
while the second problem is characterized by the boundary conditions
v =0, o, =0 on X =t a,
U = YoV, oy = 0 ony—-%*5b. (15)
These boundary conditions may be derived on the basis of symmetry considerations.
The last condition of Eq. (14) yields the following relations in the fiber
region
o, = vylop + 0y), €x = 0x(1-v¢2)/E; — ows(14vy) /Eq,
€y = = ove(l4vg) /E. + ay(l_sz)/Ef, an
where E; and v; are as defined by Eq. (4). In the matrix region the preceding
relation must be replaced by
0, = vplo, + 0y), €x = 0x(1-v2) /By - o (14w,) /E,,
€y = = oo (14vy) /En + 0y(1-v %) /E,, (18)
Hence each original plane strain problem for the two elastic media, one isotropic
and one transversely isotropic, may be reduced to a new plane strain problem for
two isotropic media with the elastic moduli E,, v, and E;, vy, respectively. All

the boundary conditions and interface conditions remain unchanged.

5. Longitudinal Shear Deformation

When the composite is subjected to a macroscopically uniform longitudinal

shear deformation, the fiber and matrix regions in the unit cell are both
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subjected to (nonuniform) anti-plane shear deformation. That is, in both regions
the displacement functions have the from
u = 0, v =0, w o= wix, y) (19)
The only nonvanishing strain components are
Yxz = W/3x, Yyz = OW/3Y,
and the only nonvanishing stress components have the expressions
Ty = Gyp OW/0%, Ty, = Gyp dw/dy in the fiber region
Tyz = Gp Ow/0x, Tyz = Gp dw/dy in the matrix region (20
The equilibrium equations reduce to the Laplace equation for w(x,y) in both the
fiber and matrix regions
Vi = 0. (21
This equation must be solved together with the following boundary conditions
W= Y along x = £ a/2
w =% 9b/2 along vy = * b/2. (2)
and the continuity conditions of w, 7,, and 7y, across the fiber-matrix interface,
i.e.,
[w] = O, Gy dw/dx = G, aw/ox%, Gz dw/dy = G, dw/dy (23)
The last two conditions of Eq. (23) imply that, unless G,; # G,, the gradient of
the solution w is discontinuous across the interface.
Since w is governed by the Laplace equation, the boundary-element analysis

of the preceding boundary-value problem for w is relatively simple.

6. The Elastic Moduli of a Unidirectional Composite

A unidirectional composite consisting of an isotropic resin material and
transversely isotropic fibers has transversely isotropic gross (macroscopic)

properties if the flbers are randomly distributed in the matrix., If the fibers
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are periodically arranged in square or hexagonal patterns, then the mechanical
behavior of the composite manifests certain symmetry properties with respect to
the planes of symmetry. Strictly speaking, such a composite may be not
transversely isotropic. For example, a unidirectional composite with a square
array of fibers placed along the coordinate directions x and y has the same gross
extensional elastic moduli in these two directions, E," = E;", and furthermore,
vy3" = v3,". However, the gross extensional modulus along other directions in the
x-y plane are general different, and the gross shear modulus G,;" associated with
the x- and y-directions is generally not equal to E;"/2(l+v,;"). Whereas a
material with transversely isotropic elastic properties possesses a continuous
group of symmetry transformations, unidirectional composites with square or
hexagonal fiber patterns possess symmetry transformations which form a discrete
group. The elastic properties of such composites are generally characterized by

-

nine independent parameters of an orthotropic material, E,*, E,", E;", vy, va",
va1', Gp2', Gpa' and G;;°, although certain relations among these parameters may
arise as in the case of square arrays. Other frequently used elastic parameters
of an orthotropic material are defined by

var = vy E7/E)T, va;” = vz E37/E;, vish = va” EJ/ES. (24)
Notice that the fiber direction (with the associated elastic moduli E;”) is here
jdentified with the z-direction while two orthogonal symmetry axes 2 and 3 are
identified with the x- and y-axes, respectiv.ly.

The gross elastic moduli of a composite may be directly determined by
experimental measurements under various multiaxial and shearing loads.
Alternatively, they may be calculated by solving several micromechanical problems

for a unit cell of the composite. Solutions to the transverse and longitudinal

shear problems, described respectively in Sec. 4 and 5 of the present paper,
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directly yield the gross shearing moduli G,3", Gi;" and G;»" of the unidirectional
composite. In calculating these gross moduli, the macroscopic shearing stress
r(," is obtained by integrating the boundary shearing stress 7;; of the
micromechanical problem along a rectilinear boundary of the unit cell and
dividing the result by the length of the boundary segment. The boundary data of
the micromechanical shearing stresses r,; are directly provided by the boundary
element solution of the micromechanical problem.

On the other hand, the evaluation of the gross extensional elastic moduli
E,*, E,", E;" and the Poisson’s ratios vi»", vy;" and v,,” of the composite requires
two independent plane strain solutions of Sec. 4 and a third solution
correspoading to a uniform longitudinal strain load, described earlier in Sec.
3. In taie last solution, the unit cell is subjected to boundary displacements
which result in an average strain field

e, = ¢ " =0, €,0 = €1,

The cor:esponding average stresses o,""?, 0" and o,"") are related to the

precedir gz average strains by the gross constitutive relation of the composite,

i.e.,
A 2 B 7SN L i BN (25a)
ay‘(l) -0y vyt - 0wyt -0, (25b)
T Y A LIV S T (25c)

In one of the two plane strain solutions, the unit cell is subjected to the
average strain field
2 :

* -
€ = €', €, = €¢; = 0.

The corresponding macroscopic stresses o, %, ¢,"? and ¢,"'? <arisfy

0, 8 = 0,7 wpy" - 0,1 vyt = PR, (25d)
0,2 — g, yyt - g, )t <0, (25e)
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g, 2~ g M2 ut - "y'm vist = 0. (25%)
For the other plane strain solution, the preceding equations for the average

strains and the average stresses are replaced by

€, = ¢, €, = ¢, =0,

and
o - ay-(a) vast - 8, ) byt = 0, (25g)
ay“(S) - ax'“” iy — ax*m ,,31' - ¢ E;", (25h)
0"t - g3 Lt oy'(-ﬂ vzt = 0. (251)

7. Calculating the average stresses aij' from the solutions of the modified
micromechanical problem

The macroscopic stresses o,"’, o,V 0,72}, ¢,"2 £,"3) and 0¢,"3 may be
appearing in Eq. (25) mav be calculated from the solutions of the micromechanical
problems for a unit cell (Sections 3 and 4) by averaging the normal tractions
over vertical and horizontal boundary segments of the unit cell. These normal
tractions (o, or o,) are provided directly by the boundary-element solutions of
the modified micromechanical problems, because o,’ = o, and o, = o, in both the
fiber and matrix regions.

The average stresses .}, ¢,"?’ and ¢,°®’, on the other hand, will be
expressed in terms of the boundary and interfacial values of the displacements
of the modified micromechanical problems. These boundary and interfacial values
are also provided directly by the boundary-element solutions. For example, one
has

(Ay + Ap) o,V = II g, dx dy, (26)
where A, arnd A, denote the cross-sectional areas of the fiber and of the matrix

material, respectively, of the unit cell, and where the integral on the right-

67




hand side extends over both areas. By virtue of the first equation in Eq. (3),
the part of the integral over the fiber cross-section yields the contribution

[! {vialoytoy) + Epefl)) dx dy = E;e'Pap + I[ fviz(o,'+0,') dx dy. (27)
Since the modified micromechanical problem is a plane-strain elasticity problem
for both the fiber and matrix regions, we have, in the fiber region

oy'to," = !Ef/(l—vf—Zufz)} (ex"+ey' ).

Substitution into Eq. (27) yields the following contribution to the right hand
side of Eq. (26):
Ere'DAr + viplE/(1-20g-v )} f u'dy - v'dx. (28)

To this must be added a similar contribution from the matrix region:

ff (vp(ogtoy) + Epe ™) dx dy = Epe DAy + vl Ep/(1-vg=20,7) ) f u'dy - v'dx. (29)
The line integrals in the last two expressions are performed along the closed
boundary curves of the fiber and matrix regions, respectively. We recall that,
according to Eq. (11), the displacement scolutions u’ and v’ of the modified
problem are generally discontinuous across the interface between the fiber and
matrix regions.

The preceding results show that the input data needed to compute the
average stresses o;;" in Eq. (25) are the values of boundary tractions and of the
boundary and interfacial displacements associated with the wmicromechanical
problems of the unit cell. These values are all immediately available from the
boundary-element solutions of the modified micromechanical problems. There is
no need to compute the stresses or displacements at any interior point of the
fiber region or the matrix region. Thus the large number of interior nodes used
in the finite-elewent analysis of micromechanical problems serve no purpose, in
the present context, other than as a means to generate the finite-element

solutions themselves. By eliminating the need for the internal nodes and the
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associated unknown variables, the boundary-element analysis provides an
exceedingly efficient method for obtaining exactly those quantities necessary for
the determination of the gross elastic modull of the composite.

After the evaluation of the average stresses, the nine gross elastic
parameters E;", E;*, E;", wvip", va', va", vy, viy" and vy;" may be easily
determined from Eq. (25). First, Eqs. (25f) and (25i) yield v,;" and v;,;", Egs,
(25b) and (25e) yield v3," and v3;", and Eqs. (25a) and (25g) provide v,3" and v,,".
Then Eqs. (25¢), (25d) and (25h) yield E,*, E,” and E,", respectively. The nine
parameters thus determined should satisfy Eq. (24), because these parameter are
calculated from the relations between conjugate forces and displacements in

elasticity solutions,

8. Implementation of the boundary-element analysis for two-dimensional interface

problems

The preceding analysis indicates that all input data needed for calculating
the gross elastic moduli of a unidirectional composite with regular and periodic
fiber patterns may be obtained from the boundary-element solutions of certain
modified micromechanical problems. These modified micromechanical problems are
plane-strain elasticity problems for two distinct isotropic¢ elastic media, with
simple types of boundary conditions for the displacements and tractions on the
exterior boundary of a unit cell, and with continuous tractions and continuous
or discontinuous displacements across the interfaces of the fiber and matrix
regions. An existing computer program for two-dimensional, plane-strain
boundary-element analysis of an isotropic medium may be applied, first to the
matrix region, and subsequently to the fiber region, where the transversely

isotropic fiber material is replaced by a fictitious isotropic material with the

69




elastic moduli E; and v; defined by Eq. (4). Each node on the interface of the
fiber and matrix regions will be counted twice {(i.e., treated as a double node),
first as a boundary node of the matrix region and later as a boundary node of the
fiber region. There are four variables associated with each boundary node: the

two displacement components u’ and v', and the two traction components t, and ty

Y

(notice that, since o,', o,’ and 7,.,' of the modified micromechanical problem are

identical to o,, o, and 7., of the original problem for the unit cell, the

y
tractions t;’ and t,’ are also identical to t, and t, on any segment of the
exterior boundary or internal interface). For a double node associated with a
point on the interface, there are eight variables, four associated with the
matrix region and the other four associated with the fiber region. The computer
program for boundary-element analysis generates square matrices [A;] and [B,] for
the matrix region such that

[An] fug) + [Bs] () = (0}, (30)
where {u,) is the column vector whose elements include all displacement variables
u’' and v' (known and unknown) associated with a boundary or interface node of the
matrix region, and {t,) is the column vector whose elements include all traction
variables t, and t, associated with the same nodes. For the fiber region, one
has a similar equation

[Ac] tug) + [Bg] ttg} = {0), (31)
where the column vectors {us) and [t;) include, respectively, the displacement
and traction variables associated with all boundary and interface nodes in the
fiber region. Notice that, for each double node on the interface, four of the
eight variables are included in Eq. (30) and the remaining four variables are
included in Eq. (31).

Equations (30) and (31) may be combined into a single equation of the
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following form

[A] {u} + [B] (t} =~ (O}, (32)
where
[Ax] [O] [ [B] [0O]
[A] = 5 [B] = L '
(0] (A] [0]  [Bg]

and {u} and {t} are, respectively, column vectors obtained by combining {u,) with
{ug) and (t;)} with {tg).

Along the exterior boundary of the fiber and matrix regions, the boundary
conditions are imposed according to Egs. (1) and (10). Each boundary condition
is a condition on an element of {u} or of [t} associated with a boundary node.
Due to the geometrical symmetry of the unit cell and the symmetry of the boundary
load, the displacements (tractions) at one boundary or interface node may be
equal or opposite to the corresponding displacements (tractions) at another node.
Furthermore, at an interface (double) node, the continuity conditions of the
tractions and the continuity or jump conditions of the displacements across the
fiber-matrix interface provide additional relations between two traction
variables or two displacement variables associated with that node.

Every boundary condition, symmetric condition, interfacial continuity or
jump condition described above has the form

X + Nx; -c =0, (33)
where x; and x; are two distinct elements of the column vector {u} or {t}, c is
a known number determined by the specified boundary displacement or by the
specified jump of u' or v’ across the interface, and the integer N may assume
values 0 (in the case of a boundary condition), +l1 or -1 (in case of a svmmetry
condition or interfacial continuity or jump conditions). There are two boundary

conditions of this form at each boundary node, and four interfacial continuity

71




or jump conditions (two for the tractions and two for the displacements) at each
double node on the interface.

Equation (33) may be used to eliminate a variable, x; or x;, from Eq. (32).
This amounts to combining two columns of the matrix [A] or of the matrix (B], or
moving a column of [A] or [B] to the right hand side of the equation after
multiplication by the factor ¢, or doing both. 1In each case the operation
reduces the dimension of the matrix [A] or [B]. When the operation has been
repeated for each one of the boundary, interface and symmetry conditions, the
total number of columns remaining in the matrices [A] and [B] is equal to the row
dimension, and those variables in (u} and {t} which have not been eliminated may
be solved from the reduced system of linear equations. This yield an approximate
solution of the modified micromechanical problem by the boundary-element method.

The preceding method of eliminating variables suggests an algorithm for
treating, in a unified and systematic way, all boundary, interface and symmetry
conditions in the modified micromechanical problem inveolving two distinct
isotropic elastic media. When these conditions are put in the form of Eq. (33),

the algorithm consists of purely algebraic manipulations on the matrices [A] and

{B].

9. Results

A Fortran program has been developed to implement the boundary-element
analysis of the moditied micromechanical problem for the unit cell composed of
fiber and matrix regions (see Appendix A: Program MICROBEM). The portion of the
program which generates the matrices (Ay], [By), [Af] and {B¢] of Eqs. (30) and
(31) are essentially taken from the two-dimensional boundary-element code for a

single isotropic elastic wedium give in Brebbia et al. (see Chapter 14 in
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Brebbia, C. A., Telles, J.C.F. and Wrobel, L. C., Boundary Element Techniques:

Theory and_ Applications in FEngineering. Springer-Verlag, Berlin, 1984).
Subroutines for combining the matrices and eliminating columns by using the
boundary, interface and symmetry conditions are included in the program. The
resulting system of algebraic equations are solved and the average stiesses ou*
corresponding to the three loading cases associated with Eq. (25) are computed
by numerical integration of the boundary tractions along the exterior boundary
and of the interfacial displacements along the interface.

In their micromechanical analysis of fiber-reinforced composites with
hexagonal fiber arrangement, Chen and Cheng used the elastic moduli for the
graphite fiber and the epoxy matrix given earlier by Whitney (Chen, C.H. and Shun
Cheng, "Mechanical properties of anisotropic fiber-reinforced composites,” J_
Appl. Mech., Vol., 37, pp. 186-189, 1970; Whitney, J. M., "Elastic moduli of
unidirectional composites with anisotropic filaments,” J. Compesite Materials,
Vol, 1, p. 188, 1967). The values are

E; = 24 msi, E; = 2 ms:i, Gy = 4 msi, vy, = 0.3, vy = 0.15
for the fiber material and

E, = 0.6 msi, vy = 0.3
for the matrix material. The composite has the fiber volume fraction V; = 0.5.
Chen an Cheng reduced the problem to a boundary problem for the biharmonic

equation and used series expansion in polar coordinates to obtain the following

results for the composite moduli:

E,* = 12.33303 msi, vy = 0.20025, viy" = 0 30025,
vs" = 0.02575, E," = 1.05805 msi, vyy" = 0.32059,
vy' = 0.02567, vy = 0.32265, E," = 1.05389 msi,

In the present analysis, the micromechanical problem for the unit cell is
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first transformed into a modified plane-strain problem iIn which the anisotropic
fiber region is replaced by a suitable isotropic medium. The exterior boundary
of the unit cell and the interfaces are partitioned into boundary elements as
shown in Fig. 10. The boundary element equations are solved and the gross moduli
of the composite are computed according to the procedure described in Sec. 8,
The results are given in the following table for the preceding material system
along with the results for two other material systems which have different values

of v, but are otherwise identical.

ol E,” E;" Ey” vig© Vo
{msi) (msi) {msi)
0.3 12.2994 1.06411 1.06406 0.3 0.31979
0.35 12.3000 1.10160 1.10150 0.32389 0.38579
0.4 12.3014 1.15481 1.15466 0.34965 0.46679
Table 6: Composite elastic moduli calculated by the boundary-element

analysis of the micromechanical problem for a unit cell

For v, = 0.3, the present results are in excellent agreement with those
reported by Chen and Cheng. Notice that since for this case v, = v, Egqs. (11}
indicate that there are no jumps of u' and v' across the interface. It is
irteresting to notice that in all three cases the parameter v,;,” of the composite
is greater than the corresponding parameters of the fiber (wv;; = 0.15) and the
matrix (v, = 0.3, 0.35 or 0.4).

The computed results of E,” and vy,” are in excellent agreement with the

predictions based on the rule of mixture:
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E," = E; Vg + Ep (1 - Vg) = 12.3 msi, (34)
vt = v Ve + gy (1 - V). (35)
Furthermore, the present results of E," are also in excellent agreement with the
predictions of certain empirical formulae proposed by Tsai (Tsai, S. W

Structural Behavior of Composite Materials, NASA CR-71, July, 19%64) and Halpin
and Tsai (Halpin, J.C. and Tsai, S.W., Effects of Enviromnmental Factors on
Composite Materials, AFML-TR 67-423, June 1969). However, the results of w,;"
obtained by micromechanical solutions (including the present solution and that
of Chen and Cheng, which are in close agreement) are significantly different from
the empirical formulae cited above. On the other hand, the in-plane volume
modulus , defined as o0,"/(2¢,") under the isotropic plane strain condition (e,"
= €;" and ¢;," = 0) as calculate by the present analysis is in excellent agreement
with the prediction of an empirical formula given in the book by Tsai and Hahn

(see Eq. f3.55) in page 397 of Tsai, S.W. and Hahn, H.T., Introduction_ to

Composite Materials, Technomic Publishing Co., Westport, Comnecticut, 1980). For

a composite with transversely isotropic gross elastic properties, this in-plane
modulus k* is determined by E,", v;;" and v,;" according to the relation
kK" = B /2(1 = va" = 2 vyt vy, (36)

For the material system considered here (with v, = 0.3}, k" has the value 0.8005
@si fruw rue present analysis and 0.8011 msi from the empirical formula of Tsai
and Hahn. Similar agreement was found for the case v, = 0.4, and for other
values of the fiber-volume fraction. Hence the results of the present analysis
confirm that an accurate prediction of v,;" can be obtained by first using the
empirical formula in Tasi and Hahn to estimate the in-plane volume modulus k*,
and subsequently calculating v,;" from Eq. (36). On the other hand, direct

estimation of v,," using the Halpin-Tsai equations generally yields results that
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have substantial errors.

By changing the fiber radius in the model of Fig. 10, and repeating the
boundary-element analysis, we obtain the gross elastic moduli of the composite
with a different fiber content. The dependence of E," and v,;" upon the fiber

volume fraction is shown in Figs. 11 and 12 for two values of v, (0.3 and 0.4).

9. Summary and a comment on future work

The determination of the gross constitutive properties of a composite
material from the constitutive equations of its constituents is a fundamental
problem in the mechanics of composite materials. The current literature on the
subject is largely confined to linearly elastic behavior of composites. Much
remains to be done in the micromechanical analysis of composites with inelastic
matrix phase. The present work indicates that the boundary-element analysis
provides a very efficient and accurate method for dealing with interface problems
at the micromechanical level. The efficiency comes largely from reducing the
dimension of the problem from three to two or from two to one. This usually
results in simplified data input and modeling, and great savings in computational
effort.

Significant progresses have been made in the last decade on the application
of the boundary-element method to plasticity problems. Although the present
analysis is restricted to elastic fibers and elastic matrices, the method can be
extended to determine non-linear and inelastic gross properties of a composite
composed of linearly elastic fibers and non-linear resin materials. In solving
micromechanical interface problems with inelastic regions, the use of the
boundary-element analysis is even more attractive, and perhaps imperative,

because of the unusual complexity of the finite-element modeling and solution of
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such problems. Furthermore, the nonlinear constitutive relation in an inelastie
process is generally history dependent. A much greater number of solutions of
different micromechanical problems (with different loading histories) must be
obtained to evaluate the material parameters or material functions characterizing
the inelastic response of the composite. Hence the solution procedure must be
standardized and used repeatedly. Any significant saving in the modeling and
computational effort for a single execution of the solution process will result
in tremendous savings in the large task of calculating the nonlinear gross

response of a composite material from the constituent properties,
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Fig. 11: Dependence of the composite

transverse elastic modulus on the fiber

volume fraction
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Fig. 12: Dependence of the gross Poisson's

ratio,lé;, on the fiber volume fraction
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IV. Failure Modes and Analysis

1. Introduction

When a filament-wound composite structure is subjected to an internal
pressure, it generates tensile membrane forces which are largely carried by two
intersecting families of stiff fibers. The matrix material serves to hold the
net of fibers in place, to transmit forces among unevenly stretched fibers via
shear action, and to contain internal pressure. While a net of fibers alone is
capable of large membrane deformation with little fiber stretching, through
finite changes in the intersecting angle, such membrane deformations are opposed
by the reactions from the matrix material. Thus, if the deformation of the fiber
net tends to compress the matrix, the matrix material reacts to the fiber net in
such a manner as to smooth out local non-uniformity in fiber tension resulting
from irregularities in the fiber diameter, material defects, winding geometry,
initial fiber stress and waviness. On the other hand, if the deformation of the
fiber net tends to produce predominantly tensile stress in the matrix, then the
composite is likely to develop matrix or interfacial cracks which propagate
across the barriers of the intersecting family of fibers. This process may
interact with and accelerate the breaking and debonding of fibers and the
sequential failure of neighboring fibers. It is apparent that in this fracture
mode of failure, the matrix and fibers behave and interact in such a manner as
to enhance and accentuate, rather than smoothing out, any initial concentration
of strains and defects. Thus, depending upon the nature of the deformation of
the fiber net produced by the pressure loading, two fundamentally different types
of failure processes can occur in a filament-wound structure, dominated

respectively by intense shear deforamation in the matrix and by the expansion of
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a surface element with eventual tensile fracture. While the processes of the
first type may be amenable to a macromechanical analysis if one takes into
consideration the distinct constitutive properties of the constituents in the
various stages of the failure processes, the methodology of fracture mechanics
is appropriate in modeling and analyzing the fallure processes of the second
type.

Since the tensile or compressive nature of the stress in the matrix
material is essentially determined by the deformation of the fiber net that would
occur in the absence of the matrix, and since the presence of the matrix merely
modifies such deformation through shear and compression, the first step in the
failure analysis is to solve the problem of finite deformation of a net of
linearly elastic (or even inextensible) fibers with prescribed boundary
conditions. The solution determines the character of the stress in the matrix
which in turn predicts the type of the failure process that will be operative,
This approach is demonstrated by the simple case of the cylindrical geometry for
which the solution of the fiber net is trivial (see Secs. 3 and 4 in the
following).

While the existing experimental data provide a sufficient basis for
identifying the failure modes in the different specimens under different test
conditions, further experimental results are need to provide a quantitative basis
for determining the empirical failure criterion associated with each failure
mode, The most commonly used failure criteria for composite materials, including
the Tsai-Wu criteria, are represented by a failure surface in the stress space.
The parameters in the criteria are evaluated by fitting the points of the failure
surface with experimental data. While criteria of such nature are useful for

characterizing the strength of the composite in the circumstances where the
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composite is only eXxpected to experience deformations with small strains, they
are not well suited for composites which may experience significant inelastic
deformation and large shear strain. Failure of filament-wound structures is
generally a progressive process starting from microcracking of matrix and
whitening at a relatively low level of stress. Aside from certain exceptions
cases, it 1s not an instantaneous event reached suddenly when the stress path
meets a certain fixed surface in the stress space. Hence the formal analogy of
the failure criteria to the yield condition in plasticity may be inappropriate.

It appears that the failure of a filament layer should depend on the
maximum values of the transverse strain ¢, and of the shear strain -+,
experienced by an element of the layer preceding failure, as well as the filament
strain ¢, at the instant of failure. There are other important reasons for
preferring a strain-based failure criterion over a stress-based criterion. The
first is that the intrinsic components of the failure strain are easily
calculated in terms of the experimental data from testing of filament-wound
structures, while the stress data in the various filament layers usually cannot
be obtained with certainty or cannot be obtained without an elaborate analysis.
The second reason is that in the analysis of a thin filament-wound structure, the
strain field is fairly smooth or uniform within the structure, and can be
expressed in terms of a small number of unknowns including the middle-surface
strains and curvatures, whereas the stresses may vary .iscontinuously from one
filament band to another, because of the discontinuous change in the filament
orientation and the cross-over of filament bands. Consequently, it is relatively
easy to apply a strain-based fallure criterion to a filament-wound structure,
Recently, Feng has proposed a strain-based general failure criterion for

composite materials undergoing finite deformation (Feng, W. W., "A failure

82




criterion for composite materials,” J. Composite Materials, Vol. 25, pp. 88-100,
1991).

While empirical failure criteria are attractive from an engineering point
of view because of its simplicity and ease of application, such formal criteria
do not suggest the underlying failure mechanism at the micromechanical level.
Although the progressive degradation of the resin matrix associated with
significant transverse and shear strains, e, and 7v;;, is initially a spread-out,
continuous process which may be characterized by a continuum theory of damage,
eventually the microcracks evolve or coalesce into finite matrix eracks or
fiber/matrix disbonds which ultimately determine the failure of the composite
according to the failure criteria of fracture mechanics. For the filament layer
in a filament-wound structure, this aspect of the failure analysis is
particularly relevant to the tubes experiencing significant transverse tensile
strain ¢, before failure. It is less important for the prediction of failure
loads governed by fiber breaking, at least in the case of axisymmetric filament-
wound structures, because in such structures the position and the level of the
maximum fiber tension may often be estimated by considering the global
equilibrium of the structure and, consequently, an empirical failure criterion
based on the average filament strength or allowable filament strain may be
adequate,

In Section 5 of the present part of the report, we present boundary-element
analyses of two-dimensional micromechanical models of fiber-matrix interfacial
di-bonds and oblique matrix cracks. For simplicity, the fiber regions are
considered as rigid whereas the resin material is treated as a linearly elastic
medium. The assumption of rigid fibers should yield an overestimation of the

interfacial stresses (which are unbounded and oscillatory according to the exact
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elasticity analysis) and therefore is on the conservative side. Analysis was
conducted for two cases corresponding, respectively, to a unit transverse strain
and a unit shear strain in the matrix region. It is found that the energy-
release rate associated with the growth of the interfacial crack grows rapidly
vhen the disbond length reaches a certain critical value. Subsequently, the
energy release rate levels off and approaches a limiting values when the disbond
length becomes sufficiently large. The case of transverse strain load is more
critical because the results show that a large energy release rate can be
attained when the disbond length is comparable or shorter than the spacing
between two neighboring fibers.

Spencer and Hull observed the occurrence of local buckling and delamination
in the failure of open-ended tubes with winding angle greater than 45°,
particularly in the 653° tubes. It may appear somewhat puzzling that delamination
should occur in a tube loaded under internal pressure, where the adjacent layers
are pressed against each other in the radial direction, and that buckling and
bending of the tuhe should happen under the open-end test condition, where the
resultant axial load in the tube vanishes. An analysis of a possible failure
mode due to the separation and growth of a helical face layer from the interior
surface of the filament-wound tube is briefly mentioned in Sec. é and described
in more detailed in the paper "Separation failure of a helical delamination in
a filament-wound composite tube," Developments in Theoretical and Applied
Mechanics, Vol. XV (Proceedings of the SECTAM XV, March, 1990, Atlanta, GA), pp.
440-447 (by Wan-Lee Yin, see Appendix C of this report).

Delamination is a prevalent mode of failure in composite laminates.
Filament-wound structures are prone to delamination failure because the

scissoring action at the cross-over point of two filaments belonging to separate
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layers, mentioned in Sec. 2.3 of Part II, may produce intense local shearing
deformation in the cross-over region as the fibers rotate and realign themselves
to the load direction. Such scissoring action results in a system of distributed
couple moment from one filament layer to the adjacent layer, which may initiate
separation of the layers. After the initiation of delamination damage,
catastrophic delamination growth may result from buckling and postbuckling
deformation of the layer when the structure is subject to the service load. A
general analysis of buckling and postbuckling growth of a thin two-dimensional
delaminated layer in a composite laminate is present in a sequence of two papers:
Yin, W.-L. and Jane, K.C., "Refined buckling and postbuckling analysis of two-
dimensional delaminations, Part I: Analysis and Validation,” and Jane, K.C. and
Yin, W.-L., "Refined buckling and postbuckling analysis of two-dimensional
delaminations, Part II: Results for anisotropic laminates and conclusion,” Int.

J. Solids & Structures, in press (see Appendix D and E).

2. Relation of the deformation a tube to the deformation of a fiber net

We consider again the deformation of the diamond-shaped region of a
filament layer shown in Fig. 1 (p.12). The length of each side of the rhombus
changes from L in the initial state to L(l+¢;) in the deformed state. Since ¢,
is bounded by the fiber failure strain, it is always small. However, during the
failure process the orientation angle of the fibers may deviate significantly
from the initial angle «,. This description applies not only to the actual
deformatior of the filament-wound tube, but also to the hypothetical deformation
of a fiber net without resin matrix.

We consider an external load which causes approximately uniform axial and

circumferential Cauchy stresses o, and oy in the tube. The magnitude of the
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shearing stress 7,y is also approximately uniform but its algebraic sign changes
from a +o filament layer to a -a layer. If the resin material were absent (i.e.,
if the filament-wound tube is replaced by a skeleton of filaments), then the
orientation of the fibers under the given state of stress would be given by the
angle a" such that

(T cos a'/L sin a")/(T sin &"/L cos a") = a,/04,
where T is the tension in each fiber. Hence,

tan a” = (gy/0,)1/2. (1)

In the case of a closed-end tube subjected to a uniform internal pressure, one
has o4/0, = 2 and a" = 54° 44*'. This angle is called the optimum winding angle
in the literature on filament-wound structures. Its optimality is clearly
dependent on the specifically assumed loading condition ayz/0, = 2.

The presence of the resin material affects the deformation and prevents the
fiber net from assuming the orientation angle a. Therefore, the actual
orientation angle of the filaments corresponding to the stress state (g,, g;) is
between u«, and e¢”. Under normal operating conditions, a should be close to a,.
Any significant deviation of o from a, toward a" would be resisted by the
shearing stiffness of the resin material. 1In any such state of small-strain
deformation (i.e., when both ¢; and 2« — a, are small), an increase in the loading
is accompanied by an increase in ¢, and a change of a away from @, toward a.
Let these small increments be denoted by Ae¢, and Aa, respectively. Then

hey > 0 and (a’-a,) bda > 0, (2)
i.e., the algebraic sign of " - a, determine that of Aa.

1f a filament-wound tube is appropriately designed, it should deform in

such a way that a remains close to e, under a wide range of operating loads.

Large deformation of the tube, i.e., significant deviation of « from a,, should
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occur only when the external load is close to the failure load. In the small-
strain deformation states preceding failure, the algebraic sign of Aa is
important because it generally determines the nature or mechanism of the failure
process, as we shall find in the following analysis.

3. Shear failure and expansion failure

Deformation of a filament-wound tube may either increase or decrease the
surface area of the rhombus shown in Fig. 1. A significant increase in the area
may result in the tensile fracture of the resin material or adhesive failure
between fiber and matrix. This is associated with experimentally observed
progressive whitening and weepage of the¢ tube, formation of droplets and,
eventually, fiber breakage and tube rupture. The initiation of this expansion
mode of failure may occur at a relatively low level of load. Large strain in the
resin material and significant rotation of the fibers do not usually occur until
the external load becomes close to the final failure load.

On the other hand, if the surface area decreases as the extermal loading
continues, then the resin material eventually fails under excessive shear
deformation. There is much less whitening of the tube and no slow formation of
droplets. When the shear strength of the resin material is exhausted, the fiber
orientation may be significantly different from the initial orientation.
Consequently, large deformation of the tube may occur in the failure process, and
an accurate prediction of the failure load may require the knowledge of the
inelastic behavior of the matrix under large deformation. Furthermore, failure
of the tube in the shear mode may be preceded by extensive delamination since the
in-plane areal compression of the resin material may result in buckling of
filament layers.

Let A, and A denote, respectively, the area of the rhombus in the initial
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and deformed state, and let AA be a small increment in A. From Eq. (2.2) of Part
II1 (p. 11) we obtain

AA/A, = 2{(sin 2a/sin 2a,)(l+e;)he; + (cos 2a/sin 2a°)(1+el)2 Aa). (3)
If a < 45°, then a positive Aa contributes to a positive increment in the area.
The opposite is true if a < 45°. Consequently, there are four possible cases:

(i) @ < 45° and a, < @'. In this case the area increases as a increases
toward a". Expansion failure occurs.

(ii) @ > 45° and o, > a". In this case the area increases as a decreases
toward o". Expansion failure also occurs.

(iii) @ < 45° and a, > a”. In this case the area decreases as a decreases
toward a". Shear failure occurs.

{(1ii) a > 45° and a, < a". In this case the area decreases as a increases
toward a“. Shear failure also occurs.

At the initiation of the expansional mode of failure, a is not
significantly different from the initial angle a,. Therefore, if the angle a"
glven by Eq. (1) is greater than 45°, then in order to avoid expansional failure
one should choose a winding angle a, smaller than the a’. On the other hand, if
e" is smaller than 45°, then the winding angle should be larger than a*. In
either case, chooiing a winding angle between 45° and a” generally promotes the
shear mode of failure (except when a, is chosen to be very close to 45° or to a°,
as will be explained below). If a, is close to a”, then the resin material will
not be subjected to excessive shear deformation in the states preceding the final
failure. The final failure will be initiated by tensile failure of weak or
flawed filaments.

If either a, = a" or a = 45°, then cos 2a Ac = 0 and, consequently, there

is no areal expansion due to the rotation of the fibers. However, there is some
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areal expansion due to the fiber strain increment Ae¢;. Thus, tubes wound at the
ideal winding angle (a, = ") or at 45° angle may start to fail in the
expansional mode. As failure progresses in the 45° filament-wound tube under the
closed-end condition, a increases toward @' and the failure behavior may
subsequently change from the expansion mode to the shear mode.

In the usual production process, a constant pitch is enforced and, as a
result, the winding angle a, is smaller toward the interior surface of the tube
and larger toward the exterlor surface. The deviation from the mean winding
angle increases with the thickness of the tube and decreases with the mean
radius. This three-dimensional effect influences the accuracy of the analysis
given in Part II. It also implies that, for whatever choice of the helical
pitch, a certain amount of in-plane shear deformation necessarily occurs in the

resin material and this shear deformation varies in the thickness direction of

the tube.

4. Experimental evidences

The preceding simple predictions are verified by various experimental
results available from the existing literature. Hull et al. (Hull, D., Legg,
M.J. and Spencer, B. "Failure of glass/polyester filament wound pipe” Composites,
Vol 9, pp. 17-24, 1978) tested filament-wound tubes with the “ideal” winding
angle (54° 44') under both closed-end and open-end conditions. Since the fiber
orientation tends to stay at the ™ideal" angle under the close-end test
condition, the surface area expands because of fiber extensional strain rather
than because of fiber rotation. Hence the tube fails under the expansion mode.
In the open-end case, the fibers tend to orient toward the circumferential
direction. The surface area decreases in the deformation process, and the tube

fails in the shear mode. The nature of the observed failure phenomena was also

89




confirmed by examination of photomicrographs {(Jones, M.L.C., and Hull, D,

"Microscopy of failure mechanisms in filament-wound pipe,” J. Material Sci., Vol.

14, pp. 165-174, 1979).

More extensive testing of pipes wound at 35, 45, 65 and 75 degree angles
(Spencer, B and Hull, D., "Effect of winding angle on the failure of filament
wound pipe", Composites, Vol. 9, pp. 263-271, 1978) further supports the
theoretical prediction. Under both closed-end and open-end conditions, the 35°
tubes failed primarily under the expansion mode, although the failure is also
accompanied by significant or large shear deformation. Weepage and whitening
begins at a very low level of loading. The orientation angle of the fibers
increase from 35° and eventually reaches 50° in the state immediately preceding
final fracture. For the tubes wound at 45° angle, the area increase due to
increase in a is zero initially (because cos 2a = 0 in Eq. (3)). The initial
failure of the closed-end tube may be associated with the expansion mode because
the surface area increases with fiber elongation. However, as o increase and
deviates significantly from 45°, shear deformation becomes dominant and the
failure process changes into that of the shear mode. Spencer and Hull observed
less extensive whitening and reduced over-all breakdown of the tube when the
winding angle is 45°. Furthermore, wunder the open-end condition, local
delamination was observed which suggested the reduction of surface area
accompanying the shear mode of failure.

The 65° and 75° tubes under the closed-end condition showed very extensive
whitening after weepage and generated creaking noise at the instant of failure.
The phenomena are clearly associated with the expansion mode of failure as the
surface area increases when the fiber orientation angle decreases toward the

limiting angle a" ~ 54° 44'. On the other hand, under the open-end condition,
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the same tubes (especially those wound at the 75° angle) showed much less
whitening. The onset of weepage occurred suddenly with the formation of jets of
liquid through the tube wall as the tube buckled before final failure. The
failure process is clearly associate with the shear mode.

Spencer and Hull reported the measured data of the axial and circum-
ferential strains as functions of the mean circumferential stress (which is
related to the internal pressure) for the tubes with various winding angles under
the open-end and closed-end conditions. From these data the Intrinsic strains
€y, €3 and +y,, and the areal expansion ratio (A-A,)/A;, may be calculated by using
the finite-deformation kinematical relations in Part I1. The results are <hown
in Figs. 13 to 17 for the open-end tubes and Figs. 18 to 22 for the closed-end
tubes. The figures show the paths of the intrinsic strain followed by different
tube specimens in the entire deformation process preceding the final failure.
Large magnitudes of 7y,,, accompanied by small or negative transverse strain e,,
indicate the shear mode of failure, while a significant positive transverse
strain and a large areal expansion ratio indicate the expansional failure mode
(for example, the 55° and 65° tubes under the closed-end condition). Under the
closed-end condition, the strain path for the 75° tube terminated prematurely at
a very low level of the pressure load. Although the average intrinsic strains
in the tube remained small before failure, a narrow spiral band of intense
whitening was clearly observed, which suggests local failure under the expansion
mode .

Experimentat results of the similar kind for other composite material
systems are available, e.g., the results for closed-end tubes of carbon/epoxy
filament-wound cylinders reported by Uemura and Fukunaga (ibid.). Special

mention should be made concerning the work of Cole and Pipes (Cole, B.W. and
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Pipes, R.B., Filamentary Composite lamipnates Subjected to Biaxial Stress Fields.

IIT Research Institute Report AD-785 362, June 1974). These authors developed
a testing device for tubular specimens with the capability of varying the axial
to the circumferential stress ratio, so that stress paths more general than the
proportional loading paths corresponding to the open-end or closed-end conditions
are made feasible, Results from such tests provide valuable additional
information concerning the nonlinear material behavior and the effect of the

strain path on the failure mode and the ultimate strength.

5. Iwo-dimensional micromechanical modeling and analysis of fiber-matrix

debonding

If, with a certain combination of the winding geometry and applied load,
a filament-wound structure undergoes the expansion mode of failure, then
whitening appears in the resin matrix at an initial stage of the failure process
due to the formation of microcracks. Eventually, small cracks coalesce to form
finite cracks across the resin matrix or on the filament-resin interface. As
mentioned previously, the expansional mode of failure is usually associated with
a transverse extensional strain in the filament layers. Under such a strain
state, the resin material near the tip of a matrix ecrack or a fiber-matrix
disbond is subjected to intense local peeling and shearing stress. This intense
local stress field may result in catastrophic growth of the crack if the level
of the transverse strain in the filament layer is sufficiently high, if the crack
length is sufficiently large, and if an increase in the crack length under a
fixed transverse strain causes an increase in the strain-energy-release rate.
This possibility is investigated in the present section of the report for a

fiber-matrix disbond, and in the next section for an oblique matrix crack running
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across the matrix region between two adjacent fibers, At this stage, the
objective of the analysis is to assess the possibility and the stability
characteristics of crack growth by using simple analytical models. Specifically,
we consider two-dimensional (plane strain or plane stress) micromechanical models
in which the fiber regions are assumed to be rigid media. The assumption
concerning the rigidity of the fiber regions is conservative because it generally
yields a more severe stress state in the vicinity of the crack tip.

5.1 Boundarv-element analvsis

We consider a plane strain model in which an isotropic resin material of
Young'’s modulus E and Poisson’ ratio v occupies the infinite strip, -o < x < =
and 0 < y < h, between two rigid filaments. A disbond of length 2a exists
between the resin and the lower filament in the interval -a < x < a. The upper
rigid filament is then subjected to a horizontal displacement hy, and a vertical
displacement he, relative to the lower filament, which result in average strains
€y, = €, and ¥, = 7Y, in the resin region. Our problem is to determine, for
various ratios of a/h, the displacements of the crack surface, the interfacial
stresses between the resin and the lower filament ahead of the c¢rack, and the
strain-energy-release rate assoclated with c¢rack growth.

Because of the linearity of the problem, the effects of the two strain
loads €, and vy, may be considered separately. This results in two problems
associated, respectively, with the vertical and horizontal displacements of the
upper filament relative to the lower filament. In the first problem, the
limiting stress and strain states at infinity (x - *=} are given by

oy = {(1-v)Y/vide,, Oy = 0, = Aég, (4a)
€, = €, €x = €, = 0, (4b)

where
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A = E/{(1-20)(1+) ), s = E/{2(1+v))
are the Lame elastic constants of the resin material. The solution to this
preoblem may be decomposed inte (1) a trivial solution characterized by uniform
strains and uniform stresses which have the expressions of Eq. (4) in the entire

matrix region and (ii) the solution of a complementary problem with the following

boundary conditions

t; = - o, = (1-v)Ke,, t, =0 along the crack surface, (5a)
u=v =0, along the remaining portions of the x-axis and
along the entire line y = h. (5b)

Similarly, the solution of the second problem, associated with the horizontal
displacement of the upper filament, can be decompesed inte (i) a trivial uniferm
solution characterized by

Txy = HYo» Yry = Yo» (6)
in the entire matrix region, and (ii)} the solution of a complementary problem

with the boundary conditions

ty = = Tey = WY t, =0 along the crack surface, (7a)
u=v=20, along the remaining portions of the x-axis and
along the entire line y = h. (7o)

Notice that the two complementary problems defined respectively by the boundary
conditions of Egqs. (5) and (7) have solutions with zero limiting displacements
and stresses at infinity.
The boundary displacements u; and the boundary tractions t; (with i = 1 and
2 corresponding, respectively, to the x and y directions) satisfy the integral
identity
u, (X) -f (G, (E.x) t,(E) - F (£,%) u (£)) ds(f), (8)

where the path of the line integral encloses the matrix region and where
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CU(E.X) = C, (C; si_j Inrt - ziz‘j/rz),

F;J(E)x) = C3r_2 lca(zin_j - zjni) + (C.,,81J + 21-_221:_]) ank}'

Z; = §i - X, rZ = Z;Zy, tl - aijn_j!
Cy = - 1/{8ap(l-v)}, C, = 3-4u,
Cy = - 1/t4n(1-v)}, C, = 1-2v.

In the preceding expressions, n; is the unit outward normal vector along the
boundary (Banerjee, P.K. and Butterfield, R., Boundary Element Methods in
Engineering Science, 19%81). The integral identity will be discretized by
dividing the boundary curve into intervals (boundary elements) and by assuming
that the displacements and the tractions vary linearly within each interval
(which is then called a linear boundary element). In the present problems the
boundary of the matrix region consists of segments of straight lines., If t; and
u; vary linearly within each element, then the integrals on the right hand side
of Eq. (8) can be evaluated exactly and numerical integration schemes are not
needed. Equation (8) yields a system of linear algebraic relations for the nodal
values of t; and u;.

At each node point, two of the four quantities u;, u,, t; and t, are
specified while the remaining two variables are to be solved. Hence the system
of linear algebraic relations obtained by discretizing Eq. (8) provides 2N linear
algebraic equations for 2N unknown nodal variables, where N is the total number
of boundary nodes. A double node, which stands for two boundary nodes at the
same position, will be used at a boundary point of discontinuity of the traction
vector t; or of the normal vector ny;. Examples of such double nodes include the
crack tip and a corner point of the matrix region. By solving the system of
equations one obtains an approximate solution for the unknown nodal displacements

on the crack surface and the nodal values of the interfacial tractions ahead of
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the crack tip.

For the two complementary problems defined, respectively, by the boundary
condition of Eqs. (5) and (7), both the displacement and the traction vectors
vanish at infinity. Hence the line integrals of Eq. (6) need be performed only
along the two horizontal paths and, in practice, only along a sufficiently long
finite portions of the paths. Furthermore, the first problem, associated with
a vertical displacement of the upper filament, is symmetric with respect to the
y-axis while the second problem, associated with a horizontal displacement of the
upper filament, is antisymmetric. These symmetry conditions may be used to
eliminate all unknown variables associated with the boundary nodes in the region
X < 0 by expressing them in terms of the remaining variables, according to the
procedure described in Part III, Sec. 8 (pp. 71-72). Notice that this practice,
which is convenient in dealing with the symmetry conditions in a boundary-element
analysis, is different from the common practice in a finite-element analysis, in
which one half of the region separated by the symmetry axis is removed from the
finite-element model and the symmetry conditions along the symmetry axis are used
as part of the boundary conditions for the reduced region. The latter practice
is not used in the present boundary-element analysis because, by removing the
left half region of the infinite strip 0 £ y = h, corner points would have to be
introduced which generally introduce additional complication in programming the
solution algorithm,

The boundary-element models used for the analysis of the tirst and second
complementary problems are described, respectively, in Figs. 23 and 24, where
only the regions x = 0 of the models are shown in the figures and the remaining
portions of the models are implied by symmetry. In these models, the length

scales have been normalized with respect to h so that the normalized width of the
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strip is unity. Figs. 23b and 24b show, in complete detail, the shaded regions
around the crack tip in Figs. 23a and 24a. The mesh of boundary elements is made
progressively finer as the crack tip is approached. The shortest elements have
the normalized length 1/512 for the problem associated with the tension load and
1/128 for the problem associated with the shear load. Outside the shaded region,
the partition of the crack face and the number of nodes may vary with the length
of the crack and, therefore, may be different from those shown in the figures.
5.2 Strain energy release rates assocjated with crack growth

When the system of algebraic equations for the unknown nodal variables are
derived by integrating Eq. (8) and the equations are solved, the energy-release

rate associated with crack growth is calculated from the crack closure integral
6 S
G = (1/27) L oy (x)uy (x=7) dx + (1/27) L Tey (XD (x-7v) dx. (9)

In the preceding integrals the coordinate x has been shifted so that its origin
is located at the crack tip, and § is a small length parameter usually taken to
be equal to the length of the boundary or finite element immediately ahead of the
crack tip. The two integrals are often referred to as the mode I and mode II
strain-energy-release rates and denoted by G; and G;;. However, there appears
to be no rigorous thecretical basis for such a partition (except for the special
case of an interior crack in a single homogeneous medium) because the interfacial
stresses o, and 7,, oscillate wildly in a tiny immediate neighborhood of the
crack tip, and the values of the two integrals are sensitively dependent on the
length parameter § when § assumes values comparable to the size of the tiny
immediate neighborhood. Sun and Mancharan showed that for a crack between two
dissimilar orthotropic media, the two integrals eventually approach the same
limiting value, G/2, when § approaches zero (Sun, C.T. and Manoharan, M.C.,
"Strain energy release rates of an interfacial crack between two orthotropic
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solids," J, Composite Materials, Veol, 23, pp. 460-477, 1989). The sum of the two

integrals, however, is quite insensitive to the length parameter é provided that
§ is sufficiently small, i.e., insensitive to mesh refinement in the boundary.
element or the finite-element model.

In spite of the lack of a rigorous theoretical justification for the
partition of G into G; and G;;, one may argue heuristically that the latter two
quantities, as calculated by using a sufficiently small (but not excessively
small) length parameter §, provide quantitative measures of two different types
of interaction (associated, respectively, with peeling and shearing) between an
immediate neighborhood of the crack tip (of size comparable to §) and the region
of the matrix outside that neighborhood. While the interfacial stresses of the
elasticity solution show wild oscillations and increasingly large positive and
negative peak values in an immediate neighborhood of the crack tip, such an
abnormal and singular stress field is invariably modified in a real material by
nonlinear and inelastic effects. However, the modified (i.e., the actual) stress
field in the real material in the immediate neighborhood of the crack tip may
still share with the singular stress field of the elasticity solution certa¥®
common gross characteristics such as the magnitudes of energy transfer associated
with the tearing and shearing action. If the redistribution of the stress within
the small immediate neighborhood of the crack tip due to the nonlinear and
inelastic material effects does not totally invalidate all results of the
elasticity solution (this assumption must be made, because otherwise there would
be no use to compite or consider the elasticity solution at all), then certain
gross quantities derivable from the approximate elasticity solutions may be
physically significant, provided that their values are not sensitively dependent

on the mesh refinement when the mesh is not so over-refined that the wild
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oscillation of the interfacial stresses is no longer limited to one element ahead
of the crack tip but spreads out over several elements. In the present analysis,
the two integrals have been separately evaluated. This is done by first taking
§ to be the length of one element ahead of crack tip, and subsequently taking é
to be the combined length of two elements ahead of the crack tip.

5.3 Results of the analvsis

The results described in the following refer to the solutions of the two
complementary problems described in Sec. 5.1. The solutions to the corresponding
original problems may be obtained by combining the present solutions with the
respective trivial uniform solutions expressed by Eqs. (4) and (6). In the
present solutions, the Poisson’'s ratio of the resin material is taken to be 0.3.

For two different crack lengths 2a = h and 2a = 4h, the displacements of
the crack face in the first complementary problem (corresponding to the average
tensile load eo=iie in the matrix material) are shown in Figs. 25 and 26. These
displacements have been normalized with respect to e¢,h. The interfacial normal
and shearing stresses between the upper rigid filament and the matrix (along vy
= h) is shown in Fig. 27 for the model with a crack length 2a = 4h. Figure 28
shows the interfacial stresses ahead of the crack tip on y = O. These
approximate solutions of the stresses show oscillatory behavior near the crack
tip and very large peak values at the crack tip. The effects of the mesh size
on the interfacial normal and shearing stresses near the crack tip are shown,
respectively, in Figs. 2%a and 29b, by comparing the results using the boundary
element model shown in Fig. 23 (fine mesh) and a less refined model in which the
smallest element size is increased from h/512 to h/256. Although the interfacial
stresses near the crack tip are significantly changed, their patterns away from

the crack tip are not appreciably dependent on mesh refinement.
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Fig. 25: Normalized crack-surface displacements under

the transverse tension load (crack length 2a = h)
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Fig. 26: Normalized crack-surface displacements under

the transverse tension load (crack length 2a = 4h)
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Fig, 28:; Interfacial stresses ahead of the crack tip

{Stresses normalized with respect to M€,

crack length 2a = 4h)
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Fig. 29a: Effect of the size of crack-tip elements
on the normalized interfacial normal stress
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Fig. 29b: Effect of the size of crack-tip elements
on the normalized interfac:al shear stress
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For the second complementary problem (associated with an average shear
strain load 7, = 7, in the matrix), the results of the crack surface
displacements are shown in Figs. 30 and 31 for two different values of the crack
length. Notice that in the case of shear load the horizontal displacement along
the crack surface is an order of magnitude greater than the vertical displacement
(i.e. the crack opening displacement). While the crack opening displacement is
positive near the crack tip x = a, it is negative in an interval to the right of
the origin. Since the vertical displacement is anti-symmetric with respect to
the coordinate x, the opening displacement near the crack tip x = —-a is negative.
Negative opening displacements imply that the resin material actually contacts
the fiber region and the solution should be modified by the effect of partial
contact. However, this effect is not investigated in the present study. The
large value of the horizontal displacement in comparison with the opening
displacement implies that, in case of negative opening displacement, there may
be severe friction effect associated with the sliding of the crack surfaces.

The interfacial stresses ony = h and y = 0 are shown, for the crack length
2a = 4h only, in Figs. 32 and 33. However, in order to provide more information
concerning the various solutions, the effect of mesh refinement on the
interfacial normal and shearing stresses is shown for a different crack length,
2a = h, in Figs. 34a and 34b. 1In the case of shear load the fine mesh (shown by
the boundary-element model of Fig. 24) has the smallest element size h/128 while
the coarse mesh his the smallest element size h/64.

The integrals G; and G;; associated with each of the two loading cases are
shown in Figs. 35 and 36 as functjons of the crack length. For the case of
tension load G; and Gy; as shown in Fig. 35 have been normalized with respect to

phe 2, while for the case of shear load they have been normalized with respect
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to ph102. Comparison 1s made between the results based on the fine-mesh model
and the coarse-mesh model. The differences are not significant for the larger
modal contribution (G; in the case of tension load and G;; in the case of shear
load). As mentioned previously, the results for G; and G;; are obtained by
choosing the length parameter § in Eq. (9) to be equal to the length of the crack
tip element in the present model. No significant changes in values of the
dominant modal contribution are found when & changes with mesh refinement,
provided the refinement is not excessive. The results are expected to vary
significantly with § when § becomes extremely small, since G; and G;; should
approach a common limit G/2 when § approaches zero.

The dependence of the total strain-energy-release rate upon the crack
length is shown in Fig. 37. As in the two preceding figures, the energy-release-
rate is normalized with respect to uhe,? for the case of tension load and with
respect to phy,2 for the case of shear load. The actual result corresponding to
a combined strain load €, = ¢, and v,, = v, may be evaluated by superposition.
The trends of the two curves in Fig. 37 have important implications on the
characteristics of disbond growth. We find that G associated with the shear
strain load incresses monotonically with the crack length. Hence, if the growth
of the disbond is governed by a critical level of the total strain-energy-release
rate, G.., and if the shear strain load v, is raised to a sufficiently high level
so that G attains the critical wvalue, then the disbond starts to grow and
subsequently G increases with the 1lengthening of the crack and becomes
increasingly greater than G., even if the shear strain load is held fixed at the
level required for the initiation of growth. The growth of the crack under the
fixed shear strain load is therefore a catastrophic process.

Under the tensile strain load ¢, = ¢,, the relation of G to the crack
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length increases rapidly and reaches a peak wvalue at a crack length of
approximately 1.5h. Subsequently G suffers a slight decrease and eventually it
approaches a constant value as the crack length further increases. From a
practical standpolint, the slight decrease in the G following the attainment of
its peak value does not change the essentially catastrophic nature of disbend
growth under the tension load. For a given disbond length 2a and for a resin
material with a known fracture toughness G_., the level of the strain load ¢, and
Yo required to initiate the growth of the disbond can be found by using the
curves in Fig. 37. The present analysis implies that, under the assumption of
a growth criterion depending only on the total strain-energy-release rate, the
disbond growth will continue catastrophically once it 1is initiated.
Gonsequently, in a filament-wound structure, fiber-matrix debonding is a possible
failure mechanism in the filament layers subjected to transverse expansion and
shear deformation.

It should be reiterated that since widespread microcracking of the resin
material usually precede final failure associated with disbond growth, there is
a need to use a continuum theory of damage to evaluate the degradation of the
elastic moduli of the resin material in the initial failure process. The elastic
moduli to be used in the micromechanical fracture analysis should be the
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